# Updating A' generator to MG5 Sarah Gaiser Stanford/SLAC February 4, 2025 U.S. DEPARTMENT OF Stanford 1 University

# A' samples – MG4 and MG5

- All event types are generated in MG5 (or egs5) except for A'
- Also, I noticed that the MG4 A' generator doesn't always generate all the requested events



# A' samples – MG4 and MG5

- All event types are generated in MG5 (or egs5) except for A'
- Also, I noticed that the MG4 A' generator doesn't always generate all the requested events
- When running MG5 for the same process, I get all requested 10 000 events



- I migrated the A' generator to MG5
- After some initial struggle, I managed to implement a MG5 version without any kinematic cuts
  - This is analogous to the MG4 A' generator that also has no kinematic constraints
- In MG4, the fermions from the decay of the A' are defined as a new type of particle with ID 611.
  - These particles are just like electrons but without electric charge.
- Initially, in MG5, I let the A' decay in  $e^+e^-$  and assigned a new ID to the A' which later caused SLIC to crash.
  - Now both MG versions use the same particles and particle IDs.
  - The following results have been generated after this fix.

SI AC

## Runtime for 10000 events



- Runtime of A' generation for MG4 is around 6 min to 9 min per file
  - However, the files often contain  $\ll 10\,000$  events
- Unfortunately, MG5 is much slower with runtimes up to 2 h

## Runtime for 10000 events



- Runtime of A' generation for MG4 is around 6 min to 9 min per file
  - However, the files often contain  $\ll 10\,000$  events
- Unfortunately, MG5 is much slower with runtimes up to 2 h

# MG4 number of events vs runtime



- $M_{A'} = 60 \, \text{MeV}$
- There seems to be no direct correlation between runtime and number of generated events for MG4

SL AC

# MG4 number of events vs runtime



- $M_{A'} = 120 \, \text{MeV}$
- There seems to be no direct correlation between runtime and number of generated events for MG4

# MG4 number of events vs runtime



- $M_{A'} = 180 \, \text{MeV}$
- There seems to be no direct correlation between runtime and number of generated events for MG4

## **Invariant mass**



Invariant mass of positron and electron coming from the decay vertex

Both versions generate events at the correct invariant mass

### **Energy sum**



• Energy sum of particles from A' decay – peaked towards beam energy

• This and the following distributions are normalized to an integral of 1.

# **Positron energy**



Flat distribution with slight peak at low energies

Same shape for MG4 and MG5 generated events

# **Electron energy**



Beam electron

- Mostly low-energetic electrons with long tail to high energies
- Vertex electron
  - Flat distribution with slight peak at low energies
- Same shape for MG4 and MG5 generated events

## **Positron tanL**



• Peak at zero with tails up to  $|\tan \lambda| = 0.2 \operatorname{rad}$ 

Same shape for MG4 and MG5 generated events

# **Electron tanL**



- Beam electron
  - Broader shape, peak at zero with tails up to  $|\tan\lambda|=$  0.4 rad
- Vertex electron
  - Peak at zero with tails up to  $|\tan\lambda|=0.2\,\mathrm{rad},$  same as positron
- Same shape for MG4 and MG5 generated events

-SI AC

- MG5 generator is already integrated into hps-mc
  - I needed to fix some issues, here is a PR for this
- Ran MG4 and MG5 samples through rest of overlay, readout, and reconstruction pipeline
  - After fixing an issue with the particle ID number, this seems to work for all files.
  - This did not finish running in time so I will present the new results next week.

#### Positron energy – not normalized



Flat distribution with slight peak at low energies

More events for MG5, same shape

# **Electron energy**



- Beam electron
  - More events for MG5, same shape
- Vertex electron
  - More events for MG5, same shape

## **Positron tanL**



• Peak at zero with tails up to  $|\tan \lambda| = 0.2 \operatorname{rad}$ 

More events for MG5, same shape

-SLAC

## **Electron tanL**



- Beam electron
  - More events for MG5, same shape
- Vertex electron
  - More events for MG5, same shape