MC production status update

Sarah Gaiser Stanford/SLAC October 22, 2024

- Tritrig events are generated using MG5
 - Cuts on minimum tanL and energy of leptons

- Problem: low psum distribution in MC different from data
 - Where is this deviation coming from?

- Tritrig events are generated using MG5
 - Cuts on minimum tanL and energy of leptons

- Problem: low psum distribution in MC different from data
 - Where is this deviation coming from?

- Tritrig events are generated using MG5
 - Cuts on minimum tanL and energy of leptons

- Problem: low psum distribution in MC different from data
 - Where is this deviation coming from?
- Missing events at low esum/psum at generator level
 - Rising edge of distribution around $E_{\min}^{I^++I^-}=1.6\,\text{GeV}$

Preselected tritrig+pulser – $E_{\min}^{l^++l^-}$ dependence

- Rising edge moves towards higher psum for $E_{
m min}^{I^++I^-}>1.8\,{
m GeV}$

- Tritrig events are generated using MG5
 - Cuts on minimum tanL and energy of leptons

- Problem: low psum distribution in MC different from data
 - Where is this deviation coming from?
- Missing events at low esum/psum at generator level
 - Rising edge of distribution around $E_{\rm min}^{I^++I^-}=1.6\,{\rm GeV}$

- Tritrig events are generated using MG5
 - Cuts on minimum tanL and energy of leptons

- Problem: low psum distribution in MC different from data
 - Where is this deviation coming from?
- Missing events at low esum/psum at generator level
 - Rising edge of distribution around $E_{\min}^{I^++I^-}=1.6\,\mathrm{GeV}$
- Naïve solution: move $E_{\min}^{I^++I^-}$ to lower values
 - Try to lower eltotsp, but **MG5** fails to generate events for all $E_{\rm min}^{J^++J^-} < 1.6\,{\rm GeV}$
 - Why? Probably problem with integration over pole in Bethe-Heitler

- How can we access lower momenta?
 - I played around with this for a bit and most things don't work
 - Best failure so far: splitting e^- and e^+ energy requirements

- Observations:
 - Need $E_{\rm min}^{e^-} \geq 1.0 \, {\rm GeV}$
 - $E_{\min}^{e^+}$ can be low
 - If high $E_{\min}^{e^-}$ given, $E_{\min}^{l^++l^-}$ can be low

Modified MC has more low Esum events, stronger peak at beam energy

- Modified MC has sharp cut at 1.0 GeV as expected
- Standard MC has sharp cut at 2.1 GeV

Modified MC peaks stronger towards low energies

P_{sum} distribution - comparison MC and data

- Distributions not normalized
- For data: peaks at $p_{sum} = 0.5 \text{ GeV}$ and $p_{sum} = 1.2 \text{ GeV}$

Data and standard MC not matching for low psum

- Data and standard MC not matching for low psum
- We could piece together the MC distributions as needed
- But probably not worth the effort

Momentum distribution on data and MC

- Looking at momentum distributions $(p_{e^-} \text{ and } p_{e^+})$ in data and MC
- Before preselection: find peaks at
 - $p_{e^+} = 0.9 \, \text{GeV}$ for data

Momentum distribution on data and MC

- Looking at momentum distributions $(p_{e^-} \text{ and } p_{e^+})$ in data and MC
- Before preselection: find peaks at
 - $p_{e^+} = 0.9 \, \text{GeV}$ for data
 - $p_{e^+}=1.0\,\mathrm{GeV}$ and $p_{e^-}=0.8\,\mathrm{GeV}$ for standard MC

Momentum distribution on data and MC

- Looking at momentum distributions $(p_{e^-} \text{ and } p_{e^+})$ in data and MC
- Before preselection: find peaks at
 - $p_{e^+}=0.9\,\mathrm{GeV}$ for data
 - $p_{e^+}=1.0\,\mathrm{GeV}$ and $p_{e^-}=0.8\,\mathrm{GeV}$ for standard MC
 - $p_{e^+}=1.1\,\mathrm{GeV}$ and $p_{e^-}=1.0\,\mathrm{GeV}$ for modified MC

- Looking at momentum distributions $(p_{e^-}$ and $p_{e^+})$ in data and MC
- Before preselection: find peaks at
 - $p_{e^+} = 0.9 \,\text{GeV}$ for data
 - $p_{e^+} = 1.0 \, \text{GeV}$ and $p_{e^-} = 0.8 \, \text{GeV}$ for standard MC
 - $p_{e^+}=1.1\,\mathrm{GeV}$ and $p_{e^-}=1.0\,\mathrm{GeV}$ for modified MC
- Cuts on $E_{\min}^{e^-}$ change shape of momentum distribution
 - This is really not surprising...
- 'Peak' around 1.0 GeV from trigger threshold at 0.5 GeV

What about switching electron and positron energy requirements?

What about having both at mid-low energies?

- Observations:
 - Need $E_{\min}^{e^+} \geq 1.2 \,\text{GeV}$ so that $E_{\min}^{e^-}$ can be low
 - $-E_{\min}^{I^++I^-}$ can be low

$$\bullet \quad \sigma_{\rm gen}^{\rm WAB} = 1.125 \times 10^{11} \ \rm pb$$

Switching gears – generated cross sections

- $\sigma_{\mathsf{gen}}^{\mathsf{WAB}} = 1.125 \times 10^{11}\,\mathsf{pb}$
- $\sigma_{\rm gen}^{\rm tritrig} = 6.871 \times 10^8 \, \rm pb$

WAB

- generated events: $300 \times 10 \times 10000 = 3 \times 10^7$
- events post preselection: 3251
- effective xsec: $\sigma_{\rm eff}^{\rm WAB}=\sigma_{\rm gen}^{\rm WAB} imes rac{3251}{3 imes 10^7}=1.219\,125 imes 10^7~{
 m pb}$
- tritrig
 - generated events: $50 \times 10 \times 10000 = 5 \times 10^6$
 - events post preselection: 129 920
 - effective xsec: $\sigma_{\rm eff}^{\rm tritrig}=\sigma_{\rm gen}^{\rm tritrig} imes rac{129920}{5 imes 10^6}=1.785\,361 imes 10^7\,{
 m pb}$
- ratio WAB : tritrig = 0.406 : 0.594

WAB production

Statistics are too low still to reasonably use WAB MC

WAB production

- Statistics are too low still to reasonably use WAB MC
- Most events are cut out at $p_{e^-} > 0.5 \, \text{GeV}$ and $p_{e^+} > 0.5 \, \text{GeV}$
 - Lots of low momentum tracks reconstructed

- Generate bigger WAB sample
 - I didn't pay as much attention to this as I should have during the last two weeks...
- I could generate test samples for different tritrig generator configs
 - Takes a lot of time and might be pointless
 - Could also make lower psum accessible to us

Comparison of cutflow for data, standard, and modified MC

Distributions with and without preselection cuts

Momentum distribution - standard MC

- $E_{\min}^{I^++I^-} = 1.6 \,\text{GeV}$ and $E_{\min}^{I^+/-} = 0.16 \,\text{GeV}$
- Distributions with and without preselection cuts

Momentum distribution - new MC

- $E_{\min}^{e^-} = 1.0 \,\text{GeV}$, $E_{\min}^{e^+} = 0.2 \,\text{GeV}$, and $E_{\min}^{I^++I^-} = 0.1 \,\text{GeV}$
- Distributions with and without preselection cuts