Update on the 2021 SVT alignment

October 15th 2024

Matthew Gignac

Introduction

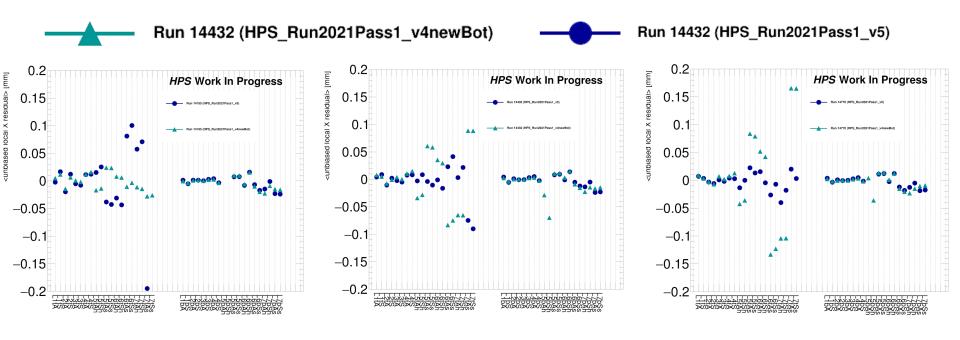
- Investigated the differences between the two detectors that have been optimized for the start and end of dataset
- Attempted an alignment of runs in the middle of dataset, where neither of the two optimized detectors provides satisfactory performance
 - Looked at alignment in physics and FEE selected datasets.
 Observe some differences, and throughout the process attempted alignment on both datasets
- Implemented FEE skimming into a pre-existing 2019 reconstruction driver, ran over EVIO files with best detectors — looked at run-by-run differences in the unbiased residuals, and attempted an alignment on these newly created datasets

Understanding changes: Top detector

 The differences between HPS_Run2021Pass1_v5 and HPS_Run2021Pass1_v4newBot detectors are all isolated to L5, L6 and L7

Detector	v4	v5	$\Delta_{(v5-v4)}$
module_L5t_halfmodule_stereo_hole (11110)	-105.303	-77.960	$\frac{-(v_5-v_4)}{27.343}$
module_L5t_halfmodule_stereo_slot (11112)	-0.099	-23.950	-23.851
module_L6t_halfmodule_axial_hole (11113)	31.428	31.428	0.000
module_L6t_halfmodule_stereo_hole (11114)	-134.322	-190.945	-56.623
module_L6t_halfmodule_axial_slot (11115)	61.091	61.091	0.000
module_L6t_halfmodule_stereo_slot (11116)	101.808	241.917	140.109
module_L7t_halfmodule_stereo_hole (11118)	-109.844	-118.154	-8.310
module_L7t_halfmodule_axial_slot (11119)	2.304	2.304	0.000
$module_L7t_halfmodule_stereo_slot(11120)$	-1.948	53.144	55.092
module_L5t_halfmodule_stereo_hole (12310)	-0.107	-0.421	-0.314
$module_L5t_halfmodule_stereo_slot(12312)$	-4.797	-4.613	0.184
module_L6t_halfmodule_stereo_hole (12314)	1.623	1.579	-0.044
module_L6t_halfmodule_stereo_slot (12316)	-3.461	-2.283	1.178
module_L7t_halfmodule_stereo_hole (12318)	1.492	0.706	-0.786
$module_L7t_halfmodule_axial_slot$ (12319)	4.624	4.624	0.000
$module_L7t_halfmodule_stereo_slot(12320)$	-5.176	-4.239	0.937

Understanding changes: Bottom detector

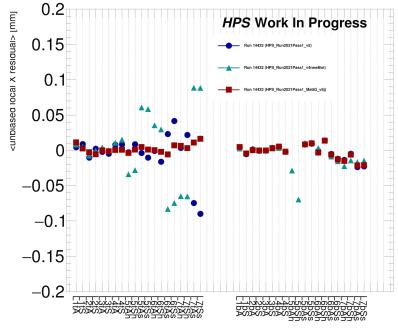

Detector	v4	v5	Δ
			$\Delta_{(v5-v4)}$
$module_L4b_halfmodule_stereo~(21107)$	-30.069	-29.844	0.225
$module_L4b_halfmodule_axial$ (21108)	-10.851	-11.042	-0.191
$module_L5b_halfmodule_axial_hole$ (21110)	174.220	68.386	-105.834
$module_L5b_halfmodule_axial_slot$ (21112)	-141.251	-148.923	-7.672
module_L6b_halfmodule_stereo_hole (21113)	-182.467	-208.073	-25.606
$module_L6b_halfmodule_axial_hole$ (21114)	175.160	210.847	35.687
$module_L6b_halfmodule_stereo_slot$ (21115)	182.220	190.502	8.282
$module_L6b_halfmodule_axial_slot$ (21116)	-186.198	-205.312	-19.114
module_L7b_halfmodule_stereo_hole (21117)	-265.976	-307.464	-41.488
$module_L7b_halfmodule_axial_hole$ (21118)	388.625	441.052	52.427
$module_L7b_halfmodule_stereo_slot$ (21119)	246.229	260.745	14.516
$module_L7b_halfmodule_axial_slot$ (21120)	-343.234	-382.148	-38.914
$module_L5b_halfmodule_stereo_slot$ (22311)	-0.100	-0.174	-0.074
module_L6b_halfmodule_stereo_hole (22313)	0.368	0.969	0.601
module_L6b_halfmodule_stereo_slot (22315)	-1.651	-1.775	-0.124
$module_L7b_halfmodule_stereo_hole$ (22317)	1.160	2.531	1.371
module_L7b_halfmodule_stereo_slot (22319)	-3.439	-3.685	-0.246

- Looking at the following "physics datasets" (mostly because this is what's available in SLCIO on S3DF).
 Conveniently, they are roughly split throughout the 14185 (start),14432 (middle) & 14770 (end) of dataset
- Ran with both HPS_Run2021Pass1_v5 and HPS_Run2021Pass1_v4newBot detectors
- For FEEs, I have been running with the momentum constrained driver, while for physics was using the "chi2" driver (as the PC doesn't make much sense here...)

Physics run residuals

- Unbiased residuals for three runs:
 - v4 works well for the early run (room for improvement in top)
 - v5 works well for the end run (room for improvement in top)
 - Neither v4 and v5 good for top detector in the middle runs

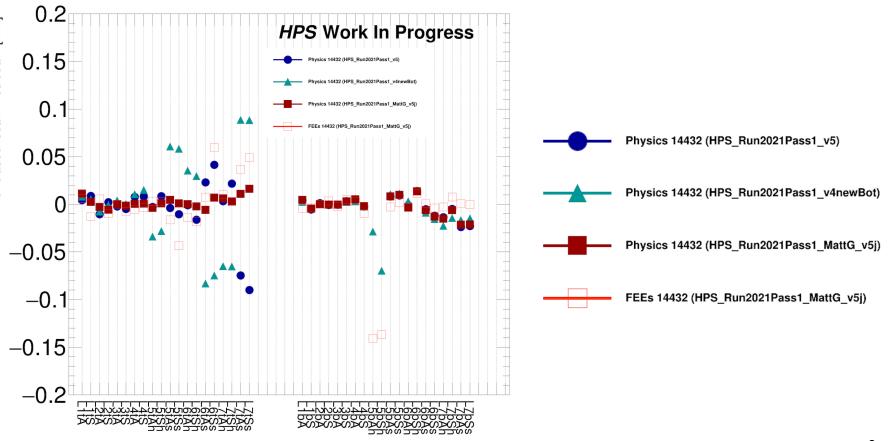
Start


Middle

Attempts at tuning middle run

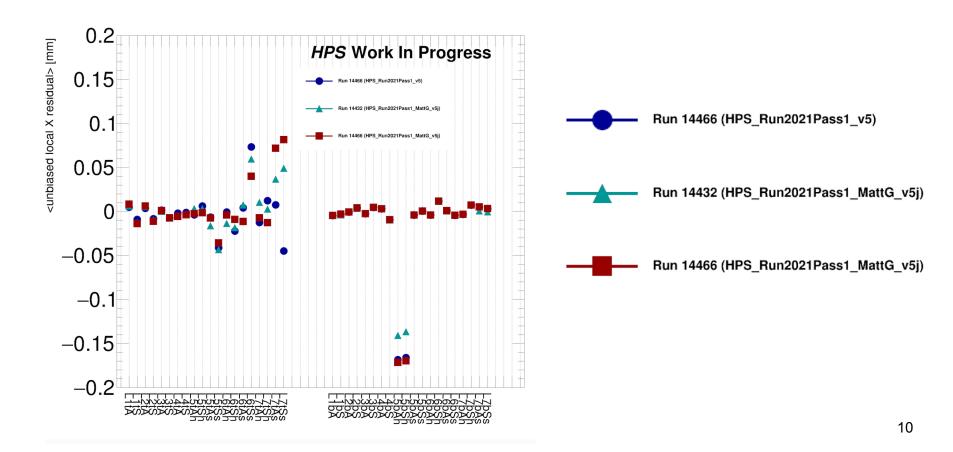
- Started with v5, and after several iterations ended up with "Matt_v5j" detector (red squares) after aligning the Run 14432 "physics dataset"
- Updated alignment looks pretty good in-situ, but required relatively large *u*-translations in L7

Detector	$\Delta({ m v5j}$ - ${ m v5})$
module_L6t_halfmodule_axial_hole (11113)	-58.172
$module_L6t_halfmodule_stereo_hole$ (11114)	67.510
$module_L6t_halfmodule_axial_slot$ (11115)	42.531
$module_L6t_halfmodule_stereo_slot$ (11116)	-43.121
module_L7t_halfmodule_axial_slot (11119)	-70.085
$module_L7t_halfmodule_stereo_slot$ (11120)	202.355
module_L7t_halfmodule_axial_slot (12319)	0.633
$module_L7t_halfmodule_stereo_slot$ (12320)	-0.423

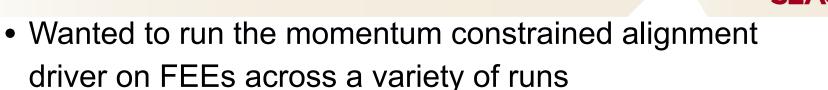


Cross checking with FEEs

- Thought to check performance of this "Matt_v5j" alignment attempt in FEEs, as the physics dataset was dominated by mostly low momentum tracks
- Cam has some "FEE skims" unclear how these were produced. Should follow up with him. Are these just FEE runs with a dedicated trigger? Or physics runs that have been filtered to select FEEs?
- Two runs available: 14466 and 14432
 - Both of these are roughly in the middle of the run period: good to look at the newly tuned detector & v5
- For FEEs, running with the momentum constrained driver, while for physics was using the "chi2" driver


FEEs: Run 14432

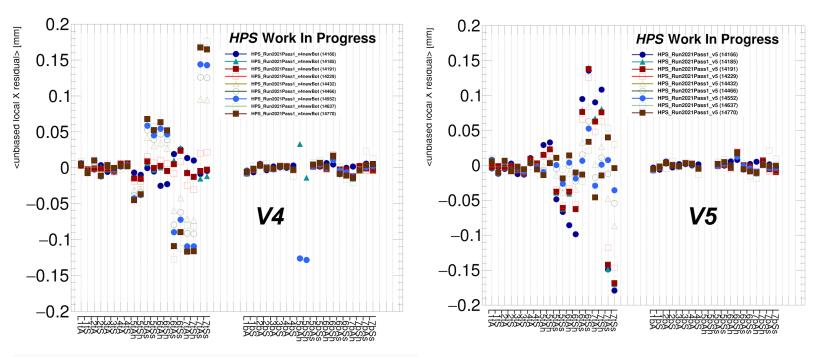
 Physics looks good in v5j, but FEEs show ~50um differences for several (slot side) layers



FEEs: Run 14466

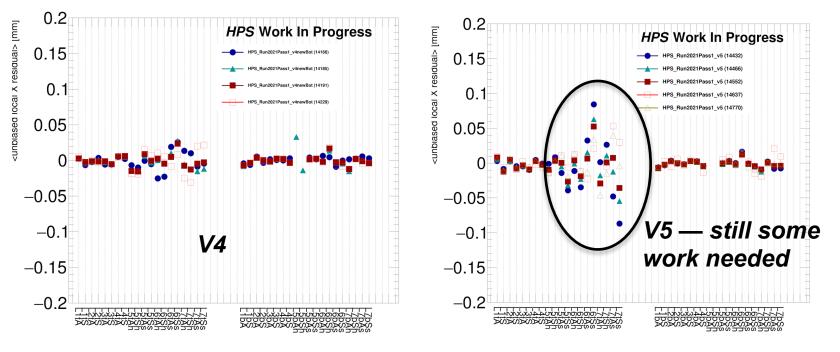
- Similar issues observed with the other FEE dataset (Run 14466), slot side: L6tSs, L7tAs and L7tSs

Creating "FEE Skims"


- Matt G pointed me to "FEEFilterDriver" was able to integrate this into the "PhysicsRun2019FullRecon.lcsim" to filter events containing:
 - ECal Seed with >1.0 GeV
 - ECal Cluster with >1.8 GeV

** Unsure about these cuts ** (e.g. what's the ECal resolution?)

- Ran over ~1500 EVIO files spread across ~10 runs
 - Filter efficiency relatively low (5%), still resulted into ~1.5 TB of skimmed SLCIO files
- Re-reconstructed these SLCIO files using the momentum constrained alignment driver for v4 and v5 detectors


Looking at several runs

- Early runs up to ~14229 look reasonably good in v4, but start to diverge at this point. Later runs all seem to move in progressively larger but similar ways
- Later runs look better in v5, but still significant residuals in outer layers of the detector

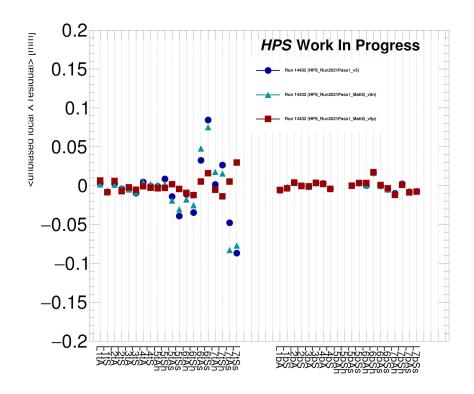
Looking at several runs

- Early runs up to ~14229 look reasonably good in v4, but start to diverge at this point. Later runs all seem to move in progressively larger but similar ways
- Later runs look better in v5, but still significant residuals in outer layers of the detector

Another alignment attempt

- Using FEEs datasets from previous slide, attempted to align run 14637 FEE dataset (end) using the "v5j" alignment from the physics dataset as starting point
 - Offloaded the movements from L7 to L6 with overall smaller *u*-translations, but similar performance

Detector	$\Delta({ m v5j}$ - ${ m v5})$	$\Delta({ m v5n} - { m v5})$
module_L6t_halfmodule_axial_hole (11113)	-58.172	-58.172
module_L6t_halfmodule_stereo_hole (11114)	67.510	67.510
$module_L6t_halfmodule_axial_slot$ (11115)	42.531	78.393
$module_L6t_halfmodule_stereo_slot$ (11116)	-43.121	-80.052
$module_L7t_halfmodule_axial_slot$ (11119)	-70.085	-70.085
$module_L7t_halfmodule_stereo_slot (11120)$	202.355	57.052
$module_L7t_halfmodule_axial_slot$ (12319)	0.633	0.633
$module_L7t_halfmodule_stereo_slot (12320)$	-0.423	-0.423


Another alignment attempt (1)

- Reasonably successful remaining differences in earlier runs seem consistent with movements in L6t slot
 - Hoping to reduce refinements beyond this to movements of L6t only for middle runs
- Most layers do not want to move in any sizable way at this point after running Millepede — limitation of FEE dataset?
 - Tried "by eye" movements of L6 & L7 (next slide)

Another alignment attempt (2)

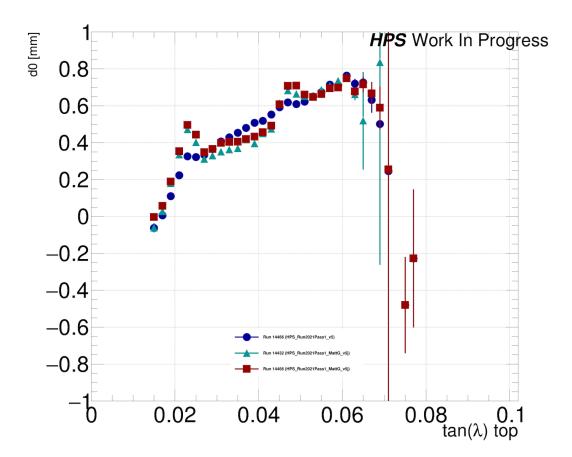
- Focused on Run 14432 shows the largest residuals
 - Moved L6tSs by +80um, L6tSh -20um,, L7tSs +30um
 - Improvements (red squares), but could be still be refined and improved

Millepede errors

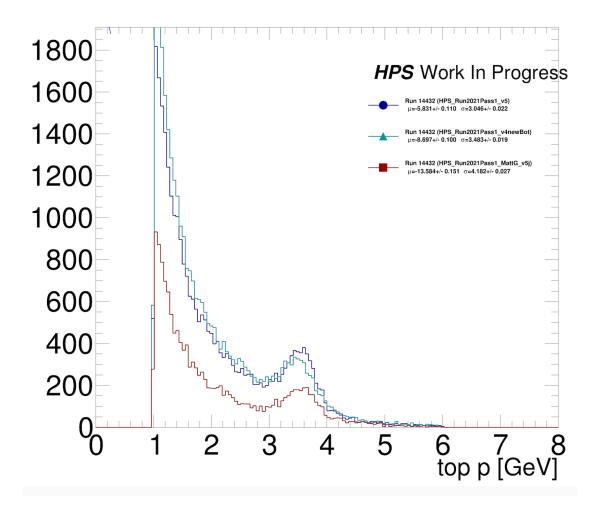
- For many runs, I am getting errors from Millepede (presumably about bad input data?).
 - Anyone run into this before? Or know what it means?

Data rejected in	previous loop:						
0	(rank deficit/NaN)	0	(Ndf=0)	0	(huge)	42081	(large)
Too many rejects	(>33.3%) - stop						

Conclusions


 Gaining some experience with the alignment machinery, and have attempted to align certain runs that showed unsatisfactory performance with existing alignments

- Mildly successful, but observed differences between physics and FEE selected datasets. At the very least, a good exercise to learn basic alignment effects
- Observed run-by-run differences in the unbiased residuals, occurring around ~14229. Residuals indicate (to me) that the detector is moving in a consistent way (size of residuals are increasing with time in same detector elements)
- Attempted a second alignment, built upon the physics attempt above and re-ran all FEEs in later runs. Remaining movement would be consistent with L6tS moving as Cam had mentioned.


P vs tanL

• As Tim mentioned, there is a slope in d0 vs tanL. All detectors show the same trend...

Physics momentum

• Mostly low momentum tracks in the physics dataset

