
Primary Vertex identification using deep learning
in the ATLAS Experiment

Rocky Garg, Qi Bin Lei, Lauren Tompkins

Stanford University

December 18th, 2024

https://www.linkedin.com/in/qibinlei/

Towards HL-LHC

Current vertexing algorithms
are iterative by nature
Motivations for ML

Fast and accurate predictions
Parallel training of events
Integration of new variables
Fine tuning for future
upgrades/projects

Simulation of Top-Antitop Pair Production at HL-LHC [Link]

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 2 / 15

http://cds.cern.ch/record/2846411/

PV-Finder Overview

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 3 / 15

Data Pre-Processing

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 4 / 15

Kernel Density Estimation

Track’s Gaussian Probability Density
P(r) = 1

2π
p|Σ| exp{α}

α=−1
2

(
(d −d0), (z − z0)

)T
Σ−1 (

(d −d0), (z − z0)
)

KDE-A = ∑
tracksP(r)

KDE-B = ∑
tracksP(r)2

KDEs are composed of 12,000 bins
Current analytical KDE production:

Evaluates the Gaussian PDF for all
particle track
∼50 million evaluations per track per
event

From ATLAS Public Note [1]

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 5 / 15

Tracks to KDE Architecture

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 6 / 15

Example of Tracks to KDE Output (1)

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 7 / 15

Example of Tracks to KDE Output (2)

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 8 / 15

KDE to Hists Architecture

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 9 / 15

Primary Vertex Information

Target Truth Information [1]

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 10 / 15

Previous Work

Trained using all KDEs
produced from the
combinatorial method
Efficiency = # reconstructed vertices

truth vertices
Prior work noted in pubnote [1]

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 11 / 15

Example End-to-end KDE to Hists Output

Training on predicted KDE-A
Using prior outputs from
tracks to KDE
∼ 3 days of training

Efficiency: ∼ 62%

False Positive Rate: 5.5
Only improvements from
here with more information

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 12 / 15

Summary

Machine learning provides a viable avenue for primary vertex identificaiton
NN-KDE network trained on one feature (KDE-A) is performing well
Upcoming Work:

Train NN-KDE on other KDEs (KDE-B-z, KDE-A-x, KDE-A-y)
Training UNet and UNet++ architectures on NN-KDEs
Compare preliminary efficiency with AMVF [1]

Thanks for listening!

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 13 / 15

Relevant Links and Directories

Ananya’s prior work on tracks to KDE
Link to Gitlab
Link to Google Doc Documentation

LHCb PVFinder
Link to Gitlab

ATLAS PV Finder
Link to Gitlab

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 14 / 15

https://github.com/qibinlei/TracksToKDE/tree/main
https://docs.google.com/document/d/1oTlUo06nhkKBF059y9mCXGqZ46PPD3TuHFIe3EkTN-g/edit
https://gitlab.cern.ch/sakar/pv-finder_v2/-/tree/master
https://gitlab.cern.ch/qlei/atlas_pvfinder

Bibliography (1)

[1] ATLAS. “Primary Vertex identification using deep learning in ATLAS”. In: (2023).
ATL-PHYS-PUB-2023-011.

[2] ATLAS Collaboration. “Development of ATLAS Primary Vertex Reconstruction for LHC
Run 3”. In: (2019). ATL-PHYS-PUB-2019-015.

Qi Bin Lei PV-Finder (US LUA) December 18th, 2024 15 / 15

Backup

Tracks

Gathering charged
particle
measurements
readout from the
detector
Calculate trajectory
estimation
Used as inputs for
reconstruction efforts
and analysis Reconstructed Track Data

Clean, Merged, Split, Fake Prior Results

[1]

Current Primary Vertex Algorithm: AVMF

Global approach to vertex
finding and fitting
Finds and fits tracks based on
compatibility to different
primary vertices
Limitations

1 Parallelization
2 Time scale increases non

linearly with number of PVs

[2]

Data Statistics

Total Events: 51000
Input Features: d0, z0,σ(d0),σ(z0),σ(d0, z0) (∼ 1000 tracks per event)

z0 ∈ [−240mm,240mm]

Output Label: KDE-A (12,000 Bins)
How should we make it easier for the neural network to learn?

Padding input features make it all the same length
Splitting KDE-A bins

Masking

A mask is used to identify valid tracks
that should contribute to the final result
(not padded value)
The masking matrix, f2, is then
multiplied with the output of the neural
network to either

1 Zero out outputs of the neural network
that do not have any track data
associated with it

2 Contribute values that will be summed
to produce the predicted KDE bins

Masking Output

Loss Function

Currently working with mean
square error loss

Will try out weighted mean
square error loss to capture
the peaks of the KDE better

Plateus for the first ∼ 50−100
epochs then drops
exponentially
MSE = 1

n

∑
(KDEpred−KDEtruth)2

KDE to Hists Loss

KDE to Hists Efficiency

KDE to Hists FPR

KDE to Hists Results

	Introduction
	PV-Finder/tracks to KDE
	Summary
	Bibliography
	References
	Backup

