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Hadronization

• pp collisions at LHC produce 

quarks and gluons which 
hadronize due to QCD 
confinement

• Longer lifetime of heavy B-
hadron creates a characteristic 

secondary vertex

Goal: Classify jet flavours (b, c, q)
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ATLAS b-taggingATLAS Higgs Hunting CMS-SMP-19-012

Selection Veto

𝑁𝑏−𝑗𝑒𝑡 = 1
𝑁𝑏−𝑗𝑒𝑡 = 0

CMS-SMP-24-001
ATLAS Higgs Hunting

H → bb ̅ WW analysis 

https://indico.cern.ch/event/242419/contributions/520667/attachments/412165/572722/B-tag2012.pdf
https://indico.ijclab.in2p3.fr/event/4754/contributions/15547/subcontributions/1336/attachments/13169/15826/Hbb-HHunting2018-LV_FINAL.pdf
https://cds.cern.ch/record/2716981/
https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-24-001/index.html
https://indico.ijclab.in2p3.fr/event/4754/contributions/15547/subcontributions/1336/attachments/13169/15826/Hbb-HHunting2018-LV_FINAL.pdf
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Graph Neural Networks (GNN)

• Variable number of nodes and 
edges

• Captures complex relationships to 
represent the system

Message Passing

• Node information aggregated from 
neighbors

• Target node updated
• Learn features of neighbors



Gabriella Pesticci 5US LUA Meeting – Dec 18, 2024

1 graph = 1 jet

1 node = 1 daughter particle

• Fully connected edges

• Variable # of nodes

Features: jet-level and 
daughter-level kinematics

Graph Construction
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Node Features

Jet Features
• Top-level jet kinematics
• Secondary vertex (SV) tagging variables 

(LHCb-PAPER-2015-016)

Daughter Features
• Kinematics unique to each daughter in the jet

GitHub

ATL-PHYS-PUB-2022-027

https://github.com/gpesticci/Jet-GNN
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b vs q – Training
~ 5h
NVIDIA GeForce RTX2080Ti GPU
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b vs q – Training

No overfitting

Plateau – end training

~ 5h
NVIDIA GeForce RTX2080Ti GPU
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b vs q - Feature Importance

Feature Ablation – remove one feature 
at a time and compare predictions
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PID Information
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Performance Results
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Conclusions

Physics Applications

Summary
• First GNN jet tagger for LHCb
• Training strengthened by PID 

information
• Broader application without SV 

dependence

Further Steps
• Expand for fat jets + HF-jets inside
• Migrate to Run 3 samples and retrain
• Integrate into Moore/ HLT2 HF jet 

selections
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Backup
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Classifier Application (b vs q) - 𝑷𝒃
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Classifier Application (b vs q)
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Classifier Application (c vs b) - 𝑷𝒄
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Classifier Application (c vs b)
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Data Preparation

Dataset

• 1.2M fully reconstructed 

di-jet events per flavour

• Leading jet only

• 80:20 training and 

validation split

Truth Matching

• Reco jet matched to truth 

jet

• Energy fraction of 

daughters used for 

flavour selection

Classifiers

• b vs q

• c vs q

• c vs b

• b/c vs q
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PyTorch Geometric Layers

SAGEConv 
• Aggregates information from neighbors – mean

• 𝒙𝑖
′ = 𝑾1𝒙1 + 𝑾2 ∙ mean𝑗∈𝒩(𝑖)𝒙𝑗

LayerNorm
• Normalize inputs across all features independently

• 𝑦 =
𝑥 −𝐸[𝑥]

𝑉𝑎𝑟 𝑥 + 𝜖
 ∗  𝛾 +  𝛽

ReLU
• Introduces non-linearity

• 𝑅 𝑧 = max(0, 𝑧)

Dropout
• Zero elements with probability, p

• Scale by factor of 
1

1−𝑝

Global Add Pooling
• After convolutional layers, add outputs

• 𝒓𝑖 = σ𝑛=1
𝑁𝑖 𝒙𝑛

Linear
• Reduce dimensionality of outputs

• 𝑦 = 𝑥𝐴𝑇 + 𝑏

Binary Cross Entropy Loss (with sigmoid layer)
• Computes difference between prediction and truth labels

• ℓ 𝑥, 𝑦 = 𝐿 = {𝑙1, … , 𝑙𝑁}⊺, 𝑙𝑛 = −𝑤𝑛[𝑦𝑛 ⋅ log σ 𝑥𝑛 + 1 − 𝑦𝑛 ⋅
log 1 − 𝜎 𝑥𝑛

AdamW Optimizer
• Minimizes loss function – stochastic gradient descent

• Separates weight decay from gradients
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