Transformer networks for constituent-based b-jet calibration with the ATLAS detector

Brendon Bullard

Postdoc @ SLAC

US-LUA lightning talk December 18, 2024

ACCELERATOR LABORATORY

Measuring $H \rightarrow b\bar{b}$ constrains **bottom Yukawa**

Brendon Bullard

Measuring $H \rightarrow b\bar{b}$ constrains **bottom Yukawa**

Limited by poor jet momentum resolution

Brendon Bullard

Measuring $H \rightarrow b\bar{b}$ constrains **bottom Yukawa**

Limited by poor jet momentum resolution

Brendon Bullard

b-jet momentum calibration with transformers

Di-Higgs production is a critical target, gives handle on Higgs self-coupling

	bb	ww	ττ	ZZ	ΥY
bb	34%	70%!	Branching fractions		
ww	25%	4.6%	of the	the two	Higgs
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Measuring $H \rightarrow bb$ constrains **bottom Yukawa**

Limited by poor jet momentum resolution

Brendon Bullard

b-jet momentum calibration with transformers

Di-Higgs production is a critical target, gives handle on Higgs self-coupling

	bb	ww	ττ	ZZ	ΥY	
bb	34%	70%!	Brand	Branching fractions		
ww	25%	4.6%	of the	the two	Higgs	
ττ	7.3%	2.7%	0.39%			
ZZ	3.1%	1.1%	0.33%	0.069%		
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%	

Improving the reconstruction of **b-quark jets** has huge impact

Machine learning for b-jets –

Brendon Bullard

Machine learning for b-jets

- + Identification of b-jets has had a long history of using ML
 - Secondary vertices, many tracks and unique radiation pattern product rich substructure

Brendon Bullard

Machine learning for b-jets

+ Identification of b-jets has had a long history of using ML

• Secondary vertices, many tracks and unique radiation pattern product rich substructure

Brendon Bullard

Machine learning for b-jets

- + Identification of b-jets has had a long history of using ML
 - Secondary vertices, many tracks and unique radiation pattern product rich substructure
- Flavor classification has dramatically improved with graph and transformer neural networks trained on low-level information \rightarrow apply to p_T regression

Brendon Bullard

The limits of flavor tagging

- - Not improved with light-jet rejection primary differentiator is $m_{b\bar{b}}$!

Need to exploit well-resolved kinematics to separate and exploit complementarity

b-jet momentum calibration with transformers

Brendon Bullard

+ In searches for Di-Higgs, single Higgs is now a background

ATLAS PUB Note ATL-PHYS-PUB-2024-015 27th July 2024

Transformer networks for constituent-based *b*-jet calibration with the ATLAS detector

The ATLAS Collaboration

The precise measurement of a jet's kinematics is a critical component of the physics program based on proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The determination of the energy and mass of jets containing bottom quarks *b*-jets is particularly difficult as, for example, they have different radiation patterns compared to the average jet and can contain heavy-flavour decays into a charged lepton and an unobserved neutrino. This document reports on a novel calibration technique for jets focusing on *b*-jets using transformer-based neural networks trained on simulation samples to correct reconstructed jet properties to the true values. Separate simulation-based regression methods have been developed to estimate the transverse momentum of small-radius jets and the transverse momentum and mass of large-radius jets. In both cases, the regression methods move the median measurement closer to the true value. A relative resolution improvement with respect to the nominal calibration between 18% and 31%, depending on the transverse momentum, is demonstrated for small-radius jets. Both the large-radius jet transverse momentum and mass resolution are shown to improve by 25–35%.

ATL-PHYS-PUB-2024-015

Physics of b-jets

- + Unique due to secondary vertex
 - B-hadron carries >80% of jet energy
 - Semi-leptonic decays (~15% BR), ν carries 20% of the jet energy
 - Charged lepton should correlate to ν
 - Leptons more important than in tagging

+ Baseline strategy:

• µ-in-jet addition to jet 4-mom 5 GeV rse grained correction binned in jet p_T, ents Ň 5 Standard Calibration (std.) Muon-in-jet Correction PtReco Correction Kinematic Fit З σ [GeV] $(\sigma_{std.} - \sigma)/\sigma_{std.}$

oration with transformers

Neural network input features

Jet features p_T, η **Track features** - Perigee parameters & uncertainties - Number of hits in pixel/strip layers - Track used for reconstructing lepton

Brendon Bullard

Resonance resolution

+23% reduction in resolution on the H(bb) peak! • More modest gain of 5% relative to μ +PtReco corrections

- Can be improved via optimization (Z/H samples in training, calocells)

From AI/ML to physics

Precision physics with b-jets at the LHC

Thank you

-Backup-

Jet reconstruction

+ Jets are the most complex objects produced at colliders Needs careful combination of signatures in tracker and calorimeters

- Cluster constituents using anti-k_T algorit
 - Use different radius pa depending on the tarc space (e.g. low/high-p

Brendon Bullard

Jet constituents

Eur. Phys. J. C 77 (2017) 466

Eur. Phys. J. C 81 (2021) 689

Brendon Bullard

b-jet momentum calibration with transformers

ATL-PHYS-PUB-2017-15

Jet constituents

+ Originally ATLAS only used calorimeter cells for jets

Eur. Phys. J. C 77 (2017) 466

Eur. Phys. J. C 81 (2021) 689

Brendon Bullard

b-jet momentum calibration with transformers

ATL-PHYS-PUB-2017-15

13

<u>At constituents</u>

Eur. Phys. J. C 77 (2017) 466 Originally ATLAS only used calorimeter cells for jets

+ Now we are using particle flow objects: combine tracks and calo-clusters • Avoid double-counting energy/momentum, boosts performance at low-p_T (used for Small-R)

Brendon Bullard

b-jet momentum calibration with transformers

ATL-PHYS-PUB-2017-15

Jet constituents

Eur. Phys. J. C 77 (2017) 466 + Originally ATLAS only used calorimeter cells for jets

- - Avoid double-counting energy/momentum, boosts performance at low-p_T (used for Small-R)
- + Recently developed unified flow objects, leverage angular resolution of tracker and energy resolution of calorimeter at high-p_T (used for Large-R jets)

Brendon Bullard

b-jet momentum calibration with transformers

+ Now we are using particle flow objects: combine tracks and calo-clusters

Large-R resonance spectrum

Brendon Bullard

b-jet momentum calibration with transformers

 $---- t \rightarrow qq'b$

220

Evaluate on SM resonances (Z/H/top)

- Significant sharpening of Z/H mass peaks
- Still a long way to go to reach truth-level

+ No mass sculpting in the QCD continuum

- Use of flat-mass samples eliminates
- SM mass point bias

Neural network architecture

Based on ATLAS flavor-tagging architecture

- anti-k_T R=0.4 PFlow (small-R) jets use **track** constituents
- anti-k_T R=1.0 UFO (large-R) jets use **track** and **flow object** constituents

Brendon Bullard

