Link to these slides, to view gifs: <u>https://docs.google.com/presentation/d/</u> <u>1rWbYMvniBpr090Lbb4XpXnuL1EILRJZw7</u> <u>7Dz0JCHnEM/edit?usp=sharing</u>

CMS

UCDAVIS

The BEST Search for Vector-Like Quarks

Samantha Abbott (She/Her) US LHC Users Association Annual Meeting 2024 Stanford, CA

Dec 18, 2024

Quirky Quarks: Vector-Like Quarks (VLQs)

- Search for new physics: <u>Vector-Like Quarks</u>(VLQs)
 - Commonly predicted by SM extensions
 - e.g. Composite & Little Higgs models
 - ► Top-like (**T**) and bottom-like (**B**)
 - Non-chiral -> vector-like
 - Very massive (>1 TeV)
- We study pair-produced VLQs
 - ► Final State is **diverse** and **boosted**:
 - Fully hadronic

Samantha Abbott

- ► 4 high p_T AK8 jets
- ▶ W, Z, Higgs, t, b

UCDAVIS

Momentum Brings Us Closer

tum Decays

Subjets

AK8 Jet

Heavy Particles -> Light Decays -> High Momentum Decays

- VLQ mass is on the TeV scale
- ► W, Z, Higgs, t, b are on the **GeV** scale
- AK8 Jets contain several constituents
 - ► These 'daughters' are
 - boosted (high momentum)
 - highly collimated

top quark decay in laboratory frame

top quark decay in top quark frame

n

Samantha Abbott

US | UA 2024

The BEST Method

The **Boosted Event Shape Tagger (BEST)** steps:

- Boost AK8 jet into different rest frames
- Calculate **BES** variables in each frame
 - Include some frame invariant variables
- Feed vars into simple Neural Net
- Classify!
 - Multi-Object classifier: W, Z, Higgs, top, bottom, QCD
 - Generalized

Perfect for our all-hadronic search for VLQs!

U (CDAVIS

7 Boost Frames:

m_{jet}, m_{SD}, W, H, top,

Neural Network: The BEST Artificial Brain 5

UCDAVIS

Scanning Through Boosts

6

UCDAV

7

US LUA 2024

UCDAVIS

Current BEST

Classic BEST (2016)

Improving on the Classics

2018 (13 TeV) **CMS** Simulation Preliminary Private work (CMS simulation) 0.8 0.8 0.73 0.03 0.02 0.17 0.01 0.04 W -0.62 0.22 0.01 0.04 0.02 W -0.09 - 0.7 0.7 0.22 0.64 0.05 0.03 0.03 0.04 0.15 0.60 0.07 0.07 0.03 Ζ 0.08 Z 0.6 - 0.6 - 0.5 0.5 0.02 0.08 0.75 0.05 0.08 0.03 0.01 0.05 0.69 0.10 0.09 0.05 Higgs True label Higgs True label 0.4 0.4 0.04 0.03 0.04 0.81 0.04 0.04 0.03 0.04 0.06 0.72 0.06 0.08 Top · Тор 0.3 0.3 0.24 0.02 0.04 0.06 0.68 0.02 0.17 0.03 0.03 0.05 0.09 0.56 Bottom 0.2 0.2 Bottom 0.1 0.1 0.76 0.03 0.03 0.05 0.11 0.05 0.03 0.05 0.19 0.66 0.02 0.02 QCD QCD Higgs Bottom 4 100 Bottom o^{CD} 100 oco r HIDOS 4 1 **Best Improvements** at high pT Predicted label Predicted label

WINNER TAKE ALL

Bood States 1 - Sta

Estimated Background

- 4 Jet Final State
- 6 Classes (W, Z, H, t, b, QCD)
 - 126 possible combinations!

Our search is across 120 of the signal regions <u>simultaneously</u>!

Soon to be BEST

U		ck me!			CMS Preliminary	2G Results				36 – 138 fb ⁻¹ (13 TeV)
		b (tH + t7) (H/7 → b	b), (Γ/m=0.05, Singlet) Mt	HEP 01 (2020) 036		0.7 - 0.9			
		▶ b (tH + tZ) (H/Z → $b\bar{b}$), ($\Gamma/m=0.05$, Singlet)) Mr	2405 05071 sub to PBD					
		► b Zt (Z \rightarrow vv)	(Γ/m=0 3. Singlet)	MT	HEP 05 (2022) 093				0.6 - 1.4	► 138 fb ⁻¹
		b 7t (7 → yy)	(Γ/m=0.2, Singlet)	M	HEP 05 (2022) 093	\rightarrow		0.6 -	1.2	► 26 fb ⁻¹
		► b Zt (Z \rightarrow vv)	(Γ/m=0.1, Singlet)	M	IHEP 05 (2022) 093	\rightarrow	0.6	-1.0		S0 ID
		► b $7t(Z \rightarrow yy)$	(F/m=0.05, Singlet)	M	HEP 05 (2022) 093	\mapsto	0.6 - 1.	0		
	P)T	\triangleright b Zt (Z \rightarrow)	(Γ/m=0.05, Singlet)	MT	PLB 781 (2018) 574		0.7 - 0.9			
	(ql	▶ b tH (H \rightarrow vv).	(F/m=0.05, Singlet)	M	HEP 09 (2023) 057		0.6 - 1	.0		
		▶ b tH (H \rightarrow vv).	([/m=0.04, Singlet)	M	IHEP 09 (2023) 057	\rightarrow	0.6 - 1.0			
		▶ b tH (H \rightarrow vv).	(Γ/m=0.03, Singlet)	M _T	HEP 09 (2023) 057	\rightarrow	0.6 - 0.9			
		▶ b tH (H \rightarrow vv).	(Γ/m=0.02, Singlet)	MT	IHEP 09 (2023) 057	\mapsto	0.6 - 0.8			
		▶ b tH (H \rightarrow vv).	(Γ/m=0.01, Singlet)	MT	HEP 09 (2023) 057	→ 0.6	-0.7			
<u>n</u>		▶ (ab)T Comb.	(Г/m=0.05, Singlet)	MT	2405.17605 sub. to Phys. Rep.	\mapsto	5 (1977-1)	← 0.6 - 1.2		
5		⊳ t Wt → lep. + jets	(Γ/m=0.1, LH)	Mp	EPIC 79 (2019) 90		→ 0.8 - 0.9			
E	-	⊳ b Wt → lep. + iets	(Г/m=0.3, LH)	Mp	EPIC 79 (2019) 90	→			C	0.7 - 1.7
	(q	⊳ b Wt → lep. + jets	(Г/m=0.2, LH)	MB	EPIC 79 (2019) 90	→			0.7 – 1	1.6
e	р)/	⊳ b Wt → lep. + iets	(Г/m=0.1, LH)	Mp	EPJC 79 (2019) 90	\mapsto			0.7 - 1.4	
>	qt)	⊳ b Hb (H→ bb)	(F/m=0.3, Doublet)	Mp	HEP 06 (2018) 031	\mapsto		0.7 - 1.1		
2	-	▷ b Hb (H $\rightarrow b\bar{b}$)	(Γ/m=0.2, Doublet)	MB	HEP 06 (2018) 031	→	0.7 - 0.8			
e		⊳ t Wt → lep. + jets	(Γ/m=0.3, LH)	Mx	EPJC 79 (2019) 90	→			0.7 - 1.5	
	×	▷ t Wt → lep. + jets	(Γ/m=0.2, LH)	Mx	EPJC 79 (2019) 90	\mapsto			0.7 - 1.3	
2	(dt	⊳ t Wt → lep. + jets	(Γ/m=0.1, LH)	MX30	EPJC 79 (2019) 90	\mapsto	0.7 - 0.9			
9	i i	$\triangleright Y_{-4/3}Y_{-4/3} \rightarrow bW bW$	→ lvqqqq	My	PLB 779 (2018) 82		\mapsto	0.	8 - 1.3	
		⊳BB → tZ tZ → bqą̃ b	qq	MB	PRD 100 (2019) 072001	\mapsto	0.	7 - 1.1		
		► BB → bqā bqā (B(bZ	(1) = 1	MB	PRD 102 (2020) 112004		\mapsto	nor Passion	1.0 - 1.4	
		► BB → bqq bqq (B(b)	(1) = 1)	MB	PRD 102 (2020) 112004		\mapsto		1.0 - 1.	6
	÷.	▶ BB → bqą̃ bqą̃ (Sing	let)	MB	PRD 102 (2020) 112004		\mapsto		1.0 - 1.4	
	ē	BB → lep. + jets (Doublet)		MB	JHEP 07 (2023) 020		\mapsto	0.9 - 1.1		
	5	BB → lep. + jets (Singlet)		MB	JHEP 07 (2023) 020		\mapsto		0.9 - 1.5	
	Pai	TT → lep. + jets (Singlet and Doublet)		MT	JHEP 07 (2023) 020		\mapsto		0.9 - 1.5	
		BB → lep. + jets (B(bH) = 1)		MB	2402.13808 sub. to PRD		\mapsto		1.0 - 1.6	5
		BB → lep. + jets (B)	bZ) = 1)	MB	2402.13808 sub. to PRD		\mapsto		1.0 - 1.5	
		▶ BB → lep. + jets (Do	oublet)	MB	2402.13808 sub. to PRD		\mapsto		1.0 - 1.5	
		▶ BB → lep. + jets (Singlet)		MB	2402.13808 sub. to PRD		→ 1.0	0-1.1		Simulation boundary
		▶ BB Comb. (Singlet a	and Doublet)	MB	2405.17605 sub. to Phys. Rep.			\mapsto	1.1 - 1.5	Simulation boundary

^ Pair Produced Vector Like Quarks!

Excluded mass range at 95% CL [TeV]

9

Thank You!

11

More Gifs

Link to these slides, to view gifs: <u>https://docs.google.com/presentation/d/</u> <u>1rWbYMvniBpr090Lbb4XpXnuL1EILRJZw7</u> <u>7Dz0JCHnEM/edit?usp=sharing</u>

12 Fox Wolfram Moments: H2

Fox Wolfram Moments: H3

Fox Wolfram Moments: H4

14

Sphericity Tensor: Sphericity

Sphericity Tensor: Aplanarity

Sphericity Tensor: Asymmetry

Backup

US LUA 2024

Input Features: Brain Food

- Boosted Event Shape (BES) variables (262 total):
 - Frame Invariant (17 total):
 - AK8 Jet position, charge, & mass
 - Isotropy
 - Secondary Vertices
 - b-tagging scores
 - Subjettiness
 - Frame Dependent (35 per frame, 245 total):
 - ► Fox-Wolfram moments
 - Sphericity tensor
 - Thrust
 - ► Re-clustered jet energies, momenta, & angles

	UCDAVIS
):	7 Boost Frames:
	m _{jet} , m _{sD} , W, H, top,
	300, 400 GeV
W/Z/H	Boost to rest frame

t jet

Samantha Abbott

Table 8: List of frame-dependent input features for training the Boosted Event Shape Tagger. For each frame, features such as the normalized Fox-Wolfram Moment (FWM) are examined, along with the four leading-energy reclustered jets.

Jet τ_1	Jet τ_2	Jet τ_{21}
Jet τ_3	Jet $ au_4$	Jet τ_{32}
Jet η	Jet ϕ	Jet Charge
Jet Mass	Jet Soft-Drop Mass	Isotropy
Subjet 1 b-tag	Number of Secondary Vertices	Subjet 1 double b-tag
Subjet 2 b-tag		Subjet 2 double b-tag

Table 9: List of frame-invariant input features for training the Boosted Event Shape Tagger. btagging values provided by DeepJet.

21 Neural Network: The BEST Artificial Brain

UCDAVIS

BES vars

For each **pT bin**:

- Identify process with the least events
- For the other 5 processes, begin randomly dropping events
 - Continue until they match the process with the least events
- Now, the pT distribution for all 6 processes will have **identical shape**

23 Zagging Behavior pT Dependence

7.2 Statistical Methods

This search uses a binned likelihood to test for the presence of any discrepancy from the predicted background. A shape-based analysis is performed on the H_T distributions in all 120 signal regions. Then, these orthogonal regions are statistically combined together and exclusion limits are placed at 95% confidence.

In this analysis, the exclusions limits are set with the CLS method in the Higgs Combine tool. As the analysis evolves there will be comparisons between the CLS results and Bayesian results in order to check the health of the statistical methods. The starting point is to construct a binned likelihood function. This is done using a Poisson likelihood defined as

$$L(d|r,\vec{\theta}) = \prod_{i=1}^{N} \frac{f_i^{d_i} e^{-f_i}}{d_i!}$$
(19)

Where f_i is the model prediction in bin *i*, and d_i is the data observed in bin *i*. f_i is actually $f(r, \vec{\theta})$ where *r* is the parameter of interest and $\vec{\theta}$ are the nuisance parameters of the model [26].

BEST Confusion Matrix

Figure 6: A Confusion Matrix for BEST using 2018 Monte Carlo Simulated data. The x-axis is the classification predicted by BEST, and the y-axis is the truth* label (the actual simulated jet). Along the diagonal are the correct identification rates, and off diagonal entries are mis-identification rates. Each horizontal row is normalized individually, by the total number of truth jets for that category. So, the horizontal rows will sum to 1, but the vertical columns will not.

BEST is performs well at categorizing *H* and *t* jets (with respect to the other categories). BEST shows confusion when trying to discriminate between *W* vs. *Z* jets, but is fairly good at categorizing a jet as *W* or *Z* (with respect to the other categories). Similarly, BEST confuses *b* vs. *QCD* jets, which makes it difficult to separate *b* jets from background.

BEST: Fraction of Truth Jets Tagged as Higgs Jets by p_{τ} for 2018

Figure 7: Fraction of truth jets tagged as Higgs jets as a function of AK8 Jet p_T . Notably, the BEST tagging rates are flat in p_T , which is by design. BEST correctly classifies a truth level Higgs jet ~75% of the time.

This corresponds to the **Predicted Label: Higgs** vertical line of entries on the Confusion Matrix. Each **True Particle** line here matches the corresponding **True Label** box on that **Higgs** vertical line.

BEST: Percentage of Truth Level Bottom Jets Classified as X by p_{τ} for 2018 ²⁹

Figure 8: Each BEST category's classification rate for truth level bottom jets, by AK8 Jet p_{T} . Note that b-tagging degrades at high p_{T} . This illustrates some of BEST's confusion between b jets and QCD jets.

This corresponds to the **True Label: Bottom** horizontal line of entries on the Confusion Matrix. Each **Classified As** line here matches the corresponding **Predicted Label** box on that **Bottom** horizontal line.

BEST: Fraction of Truth Jets Tagged as QCD Jets by SoftDrop* Mass for 2018

Figure 10: Each BEST category's classification rate for truth level QCD jets, by AK8 Jet SoftDrop Mass. The QCD lines in both plots are identical. The above plot helps explain the dip in jets tagged as QCD near the W and Z mass.

Figure 9: Fraction of truth jets tagged as QCD jets as a function of AK8 Jet SoftDrop Mass. BEST is *not* blind to mass like it is to p_T , so these rates are not flat. The dip in the plot near 75 GeV is due to most jets near that mass being categorized as *W* or *Z* jets, across all categories.

This corresponds to the **Predicted Label: QCD** vertical line of entries on the Confusion Matrix. Each **True Particle** line here matches the corresponding **True Label** box on that **QCD** vertical line.

BEST: Percentage of Truth Level Top Jets Classified as X by Soft-Drop Mass for 2018

Figure 11: Each BEST category's classification rate for truth level top jets, by AK8 Jet Soft-Drop Mass. The higher the top jet's Soft-Drop Mass, the better BEST is at classifying it. BEST shows confusion when Soft-Drop mass is near another category's rest mass, as seen in the peaks in the misclassification rates for the top quark.

This corresponds to the **True Label: Top** horizontal line of entries on the Confusion Matrix. Each **Classified As** line here matches the corresponding **Predicted Label** box on that **Top** horizontal line.

32 Exclusively the BEST

- Mass exclusion limits
- Improved from previous analysis!
 - More data, improved Tagger

- Have not unblinded!
 - This plot is a measurement of our sensitivity

Compare to world's best:

- m_{TPrime} > ~1440 GeV
 - Full Run 2 (all years)
 - 1:1:1 Branching Ratio
 - **Leptonic Final States**