

HL-LHC tī event in ATLAS ITK at <µ>=200

# A Journey through ITk Pixel Module Quality Control and Lessons from Preproduction

Emily Anne Thompson

December 2024

**US-LUA Annual Meeting** 



Bringing Science Solutions to the World



The HL-LHC is turning on in 2030. It will provide a challenging environment for charged particle tracking

- Much higher particle density and radiation damage compared to Run-3 conditions
- Increased trigger rate (100 kHz  $\rightarrow$  1 MHz)

A new, all-silicon tracking detector (ITk) will replace the current ATLAS inner tracker:



The ITk pixel detector is a bigger and better version of the current silicon detector in ATLAS

| Pixel detector      | Current | ITk                |
|---------------------|---------|--------------------|
| Number of modules   | 1744    | 9164 <b>→ 5</b> x  |
| Active area $[m^2]$ | 1.6     | 13 <b>→ 8x</b>     |
| Channels            | 92M     | 5083M <b>→ 55x</b> |

New technology:

...

- Thinner silicon sensors with smaller pixels
- More radiation-hard FE-chips with higher readout bandwidth
- Novel serial powering scheme





The ITk pixel detector will consist of ~ 9,000 pixel modules (but we need to build ~12,000)

#### **Pixel module:**





2 cm

Highlight: serial powering  $\rightarrow$  fewer cables!

- Modules connected in series with constant input current (serial powering chain) •
- FE-chips connected in parallel (equipped with shunt regulators (SLDO))







Quality control (QC): tests performed on all 12,000 modules to understand...

Will this module will work and deliver desired performance in the ITk for the entirety of the HL-LHC?

### Journey of a module through QC:



Ensuring consistency across testing stages and uniformity across testing sites is a major challenge of QC

## The tools

We developed a set of software tools (module-QC-tools) for the collection and analysis of QC data

• Set of python packages with minimal requirements to allow flexibility and usage at all testing sites



We are at the end of *preproduction*  $\rightarrow$  assembling and testing 10% of total modules

#### Are we building modules with production-level quality?

Example QC test of the module powering (SLDO) - expected to be the module yield driver:

Data from one FE-chip:







Lower limit on digital shunt current ensures adequate current overhead during operation

✓ QC tests indicate that the SLDO powering is working as expected

✓ Passed the Production Readiness Review in Nov. 2024 – **ready to start module production**!

Lessons from ITk pixel module pre-production (non-exhaustive):

- 1. The QC dataflow is working
  - Developing common tools was worth it facilitate easier understanding of data
- 2. Need to speed up QC
  - Systematically reviewing each test/stage to slim QC procedure without compromising detector quality
- 3. Need to pay close attention to **yield drivers** especially for the test of serial powering
  - Prioritizing system tests of serial powering chains

We are looking forward to start to module production in 2025!

