

Non Resonant Production of $t\bar{t}HH$, $HH \rightarrow 4b$ Analysis with full Run 2 data at CMS

2024 US LHC Users Association

December 17th, 2024

Aurore Savoy-Navarro^{1,1}', Ozgur Sahin¹, Gamze Sokmen², Sezen Sekmen³, Maxwell Chertok⁴, **Wei Wei**⁴

¹ CEA-IRFU, University Paris Saclay, ¹ CNRS-IN2P3, ² Laboratoire Leprince-Ringuet, LLR, CNRS/IN2P3, ³Kyungpook National University, ⁴ University of California, Davis

<u>Phy</u>sics Motivation

 $t\bar{t}HH$ provides

- direct measurement of the top-quark Yukawa coupling y_t
- measurement of trilinear Higgs self coupling λ_3

• Also important for the study of BSM (especially CHM)

Cross section at (N)LO as a function of self interaction λ . arXiv: <u>1401.7340</u>

- 13 TeV: $\sigma(ttHH) = 0.775$ fb (NLO QCD)
- 14 TeV: $\sigma(ttHH) = 1$ fb (NLO QCD)
- Expected to have ~ 400 (3000) events at Run 3 (HL-LHC)

Physics Motivation

• The interplay between SM HH, VBF(HH), ttH & ttHH couplings at LO

• ttHH has access to both the top-Higgs Yukawa and the triple Higgs couplings without negative interference

tt(SL)HH(4b) at HL-LHC, WP Snowmass 2022

	CMS Physics Analysis Summaries	
Report number	CMS-PAS-FTR-21-010	
Title	Search for the nonresonant ${ m tar t}{ m HH}$ production in the semileptonic decay of the top pair and the Higgs pair decay into b quarks at the HL-LHC	
Corporate author(s)	CMS Collaboration	
Collaboration	CMS Collaboration CN/C INIC ETD 21 011	
Subject category	Particle Physics - Experiment	
Accelerator/Facility, Experiment	CERN LHC ; CMS	
Abstract	This work describes a prospective search for the production of a top quark-antiquark pair associated to a pair of Higgs bosons with the upgraded CMS detector at the High-Luminosity LHC using proton-proton collisions at $\sqrt{s} = 14$ TeV. The analysis is performed on dedicated samples simulated with the upgraded Phase-2 conditions. The candidate ti HH events are selected with criteria targeting the lepton plus jets decay channels of the ti system and the decay of the double Higgs bosons into two bottom quark-antiquark pairs. In order to increase the sensitivity of the search, selected events are input to a multi-classifier deep neural network. The resulting discriminants are split into several b jet multiplicity categories with different expected signal and background rates. A simultaneous maximum likelihood fit is performed to evaluate the expected sensitivity reach. The analysis is expected to exclude tilH production down to 3.14 times the SM cross section with 3000 fb ⁻¹ of data. The sensitivity of Minimal Composite Higgs Model scenarios is also presented.	

Letter of Interest for Snowmass 2021 EF01 Topical Group: Search for exotic $t\bar{t}HH$ couplings at the HL-LHC

Snowmass LOI

M. Chertok, Wei Wei

August 31, 2020

PhD Thesis

IFT-T.002/20

CMS endorsed PhD (July 2020)

Exploring the Higgs sector beyond the Standard Model with the Top Yukawa coupling: a phenomenological and experimental search

Leônidas Augusto Fernandes do Prado

SEARCH FOR THE $t\bar{t}HH(b\bar{b}b\bar{b})$ NONRESONANT PRODUCTION IN THE LEPTONIC FINAL STATES USING MACHINE LEARNING TECHNIQUES AT THE CMS EXPERIMENT

CMS endorsed PhD (January 2024)

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

GAMZE SÖKMEN ŞAHİN

Signatures

• We look for ttHH in semi-leptonic and di-leptonic decays of top pairs and with both Higgs decaying each into a pair of b quarks, using Run2 data.

MC & Data Samples

MC Simulation

Signal:

• $t\bar{t}HH(b\bar{b})$

$t\bar{t} + Jets$ Background

- 5FS $t\bar{t}$ + Jets (SL + DL) Powheg + Pythia8
- 4FS $t\bar{t}bb$ (SL + DL) Powheg-Box-Res + Pythia8
- $t\bar{t}4b$ Madgraph + Pythia8

Other Backgrounds:

- $t\bar{t}H$ (SL + DL) Powheg + Pythia8
- $t\bar{t}Z$ Madgraph_aMC@nlo + Pythia8
- $t\bar{t}ZZ$, $t\bar{t}ZH$ Madgraph + Pythia8

Real Data

SL

- Single Muon
- Single Electron

DL

- Double Muon
- Double EG
- Muon EG

Baseline Event Selection for Both Channels

	SL Case	DL Case
Number of jets	>= 5	>= 4
Number of b-tagged jets	>= 4	>= 3
(not b-jets)		
Number of leptons	=1	= 2
MET (GeV)	> 20	> 40
Sign and flavour of leptons	e^{\pm}, μ^{\mp}	$e^+e^-, \mu^{\pm}e^{\mp}, \mu^+\mu^-$
Min. $m_{e^+e^-/\mu^+\mu^-}$ [GeV]	-	20
$m_{e^+e^-/\mu^+\mu^-}$ [GeV]	-	<76, >106

$t\overline{t} + bjet$ Modeling

• Model $t\bar{t}$ background using $t\bar{t}$ (5FS), $t\bar{t}b\bar{b}$ (4FS) and $t\bar{t}4b$ simulations

 $g\bar{b} \rightarrow t\bar{t}b + IS \, splittings$

 $gg \rightarrow t\bar{t}g + FS splittings$

1. $t\bar{t}$ 5FS: additional b-tagged jets come from PS. Lower precision but accurate tuning to data.

2. $t\bar{t}b\bar{b}$ 4FS: $t\bar{t}b\bar{b}$ described through $t\bar{t}b\bar{b}$ tree MEs, better modeling of $t\bar{t}$ + b jets events.

Event Reconstruction

Minimum χ^2 method for ttHH, ttZH and ttZZ ٠

BDT jet assignment method – [ABDT] ٠

ttHH jet assignment (A) Private work (CMS simulation) 2017 (13 TeV) 0.50 0.00 0.25 0.75 BDT respons -0.75 -0.50 -0.25 0.00 0.75 0.25 0.50 BDT response

Graph Attention based jet assignment – GATJA

Analysis Strategy

• Multi-classification DNN to separate events into one output node.

DNN Discriminators

• Construct final discriminators from the highest output score of DNN, for SL (left) and DL (right)

Wei Wei (UC Davis)

<u>Asimov Results</u> - Simultaneous binned profile likelihood fit

SL channel - Run2

	Best fit (μ)	Observed (Asimov)	$1.0^{+18.3}_{-19.3}$
5i4b Sugt	95% CL upper limits on μ	Expected (Median)	42.6
oj40 oyst		Expected (68% CL range)	[27.6, 71.5]
		Expected (95% CL range)	[19.5, 122.4]

DL channel – Run2

Swet O Stat	95% CL upper limits on μ	Expected (Median)	36.62
Syst. \oplus Stat.		Expected (68% CL range)	[23.88, 57.50]
		Expected (95% CL range)	[16.74, 86.54]

137.6 fb⁻¹, √s = 13 TeV

Wei Wei (UC Davis)

Asimov Results - Simultaneous binned profile likelihood fit

• SL + DL Combined

<u>Summary</u>

- $t\bar{t}HH$ is a critical and upcoming analysis at LHC Run 3 and HL-LHC
- Provides direct measurement of the top Yukawa and Higgs trilinear coupling, highly complementary to direct HH searches
- Full Run 2 result is important milestone for this physics program:
 - We have created a robust analysis for both the SL and DL decays of the $t\bar{t}$ pair, along with HH -> 4b to maximize the BR
 - Prepare for Moriond this winter, publication in 2025

BACKUP

NEW FEATURES IN RUN 2 ANALYSIS & IN PREPARATION FOR RUN 3: FURTHER DEVELOP THE tt+4b's BACKGROUND ANALYSIS (cont'd)

A galery of tt+4b "portraits" by Madgraph_aMC@NLO (C. Bautista-IFT-UNESP & ICTP) 13/01/2021

Htobb-CMS-ttHH_ASN

Wei Wei (UC Davis)

27

Systematics

Free parameters

- ttH rate
- ttbar rate

QCD scale and PDF+ α_S scale

Samples	σ [fb] at 13 TeV
t tHH, HH $\rightarrow \rm b\bar{b}b\bar{b}$	$0.775^{+1.5\%}_{-4.3\%} \pm 3.2\%$ [NLO] [10]
$t\bar{t}H$	$507.1^{+5.9\%}_{-9.3\%} \pm 3.6\%$ [NLO] [10]
$t\bar{t} + jets$	$831760^{+2.4\%}_{-3.5\%} \pm 4.2\%$ [NNLO] [35]
$t\bar{t} + bb$	$1452_{-27.5\%}^{+37.6\%} \pm 3.2\%$ [NLO] [30]
$t\bar{t} + 4b$	$296^{+30.0\%}_{-30.0\%} \pm 3.5\%$ [LO] [10], [3]
$t\bar{t}Z$	$841^{+9.6\%}_{-11.3\%} \pm 2.8\%$ [NLO] [10]
$t\bar{t}ZZ$	$1.98^{+5.2\%}_{-9.0\%} \pm 2.6\%$ [NLO] [10]
$t\bar{t}ZH$	$1.535^{+1.9\%}_{-6.8\%} \pm 3.0\%$ [NLO] [10]

[3] CMS-PAS-FTR-21-010,

http://cds.cern.ch/record/2804085?In-en.

[10] LHC Higgs Cross Section WG 1610.07922
[30] J. Alwall et al. *JHEP* 07 (2014) 079 [1405.0301].
[35] NNLO+NNLL top-quark-pair cross sections: ATLAS-CMS https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO.

Source	Type	Remarks
Integrated luminosity	rate	Signal and all backgrounds
Lepton identification/isolation	$_{\rm shape}$	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
L1 prefiring correction	shape	Signal and all backgrounds
Pileup	$_{\rm shape}$	Signal and all backgrounds
Jet energy scale (JES)	$_{\rm shape}$	Signal and all backgrounds
Jet energy resolution (JER)	\mathbf{shape}	Signal and all backgrounds
b tag HF/LF fraction	$_{\rm shape}$	Signal and all backgrounds
b tag HF/LF stats (linear)	$_{\rm shape}$	Signal and all backgrounds
b tag HF/LF stats (quadratic)	shape	Signal and all backgrounds
b tag lf fraction	$_{\rm shape}$	Signal and all backgrounds
b tag lf stats (linear)	$_{\rm shape}$	Signal and all backgrounds
b tag lf stats (quadratic)	$_{\rm shape}$	Signal and all backgrounds
b tag charm (linear)	$_{\rm shape}$	Signal and all backgrounds
b tag charm (quadratic)	\mathbf{shape}	Signal and all backgrounds
Renorm./fact. scales	rate	Scale uncertainty of (N)NLO prediction for
		$t\bar{t}HH, t\bar{t}, t\bar{t}Z, t\bar{t}ZH, t\bar{t}ZZ, t\bar{t}H$
$PDF + \alpha_S(gg)$	rate	PDF uncertainty for gg initiated processes
$PDF + \alpha_S(q\bar{q})$	rate	PDF uncertainty for $q\bar{q}$ initiated processes
$\mathrm{PDF} + \alpha_S(qg)$	rate	PDF uncertainty for qg initiated processes
PDF shape	shape	Based on NNPDF variations
$\mu_{\rm R}$ scale	$shape/rate^*$	Renormalisation scale uncertainty of the ME
		generator
$\mu_{\rm F}$ scale	$shape/rate^*$	Factorisation scale uncertainty of the ME gen-
		erator
PS scale: ISR	$\rm shape/rate^*$	Initial state radiation uncertainty of the PS
		(PYTHIA)
PS scale: FSR	$shape/rate^*$	Final state radiation uncertainty of the PS
		(PYTHIA)
Bin-by-bin event count	shape	Statistical uncertainty of the signal and back-
		ground prediction due to the limited sample size

Wei Wei (UC Davis)

DNN Discriminators

• Construct final discriminators from the highest output score of DNN, for SL (left) and DL (right)

