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Pixel Detectors on collider:

« O(100) million pixels

» Petabyte per second data rate (more for future colliders!)
Can't send everything off-detector

Challenge: how to effectively reduce the data volume transmitted off-detector while preserving useful physics
information as much as possible?



ML-augmented readout system

Silicon Pixel Detectors
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ML-augmented readout system

Silicon Pixel Detectors
with ML-augmented
readout

Reduced Cables
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What technology can run ML at the front-end?
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Low power
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What's Embedded FPGA?
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Embedded FPGAs (eFPGAS)

Basic idea is that you can put reconfigurable logic in your ASIC design.
» Full reconfigurability: can be re-configured just like a regular FPGA
» Power Efficiency: ASIC implementation means lower power than FPGA (“best of both worlds”)

* Development Time: “plug-and-play” FPGA fabric into ASIC
» Cost: no need for costly engineer hours or licenses to design an ML chip

Also, in use as hardware accelerators GO gle

Open source

(e)FPGA generators
Why they are included by default
in Google’s programs?

See Larry Ruckman's (CPAD 2024) talk for more
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https://indico.phy.ornl.gov/event/510/contributions/2159/attachments/1684/3955/CPAD-2024-eFPGA-Ruckman.pdf

eFPGA Development at SLAC

2 mm

Fabulous v1 ASIC Floorplan of eFPGA
fabric after Place&Route

» SLAC's Technology Innovation Directorate (TID) demonstrated an eFPGA design in a 130nm CMOS
Multi-Process Wafer (v0)

» Subsequently designed a version 1 “proof-of-concept” eFPGA in 28nm CMOS in 2023 (v1), Tmm X
Tmm

Results are published on 2024 JINST 19 P08023

Both are designed with open-source framework “FABulous” from University of Manchester. Low cost and
barrier to entry for institutions to participate in microelectronics design.

FABuULOUS
eFPGAs made easy
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https://iopscience.iop.org/article/10.1088/1748-0221/19/08/P08023
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Machine Learning at the Front-End



Smart Pixel Dataset

Timestep: 4 | Data Point: 19 | pt: -0.23

We used the Smart Pixel Dataset’,
which are pixel clusters produced
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https://zenodo.org/records/7331128

Proof-of-concept study

Reduce data rate by momentum classification using a Boosted Decision Tree

with conifer. /\c .
~Conifer
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y(/ , Silicon Pixel Detectors with Delete :
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Proof-of-concept Results

We train a BDT to classify tracks with transverse momentum larger than 2 GeV, quantize and implement
on the v1 eFPGA in 28nm CMOS. Use only 294 LUTs and nothing else (BRAM_18K, DSP, FF, URAM).
Latency under 25ns. Hardware test achieves 100% accuracy compared to expected output!
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https://iopscience.iop.org/article/10.1088/1748-0221/19/08/P08023

Variational Autoencoder for readout

Variational Autoencoder is a type of Silicon Pixel Detectors with Level 1
neural network which learns to ML-enhanced readout Trigger
compress and reconstruct input data. I
We propose to use them for off- I
detector data compression and H Reduced ICab|e§_
anomaly detection for readout :
system. Encoder I Decoder
<40 MHz

« Latency constraint <25 ns
*  Within eFPGA limited resources
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Example reconstruction

Input. y0=-1.6223
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The model learns to reconstruct the whole piece with only 4 time slices!
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Variational Autoencoder (VAE)

Input Reconstructed |

Latent Distribution

Sampled Latent
Vector

Kullback—Leibler divergence(KL) is a regularization term in training loss which helped shape the
latent distribution into gaussian. Then the clipped KL divergence can be used as anomaly score

with only the mean.
_ 2 2 2
22 KL =) . i +0; — 0g O
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VAE for Defect monitoring
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Clipped KLD can be used to capture detector defects.

Results on arXiv 2411.01118 and submitted to JHEP.
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https://arxiv.org/abs/2411.01118
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Conclusion
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Conclusions

* Real-time machine learning embedded directly in particle detector
hardware could revolutionize how these instruments operate at future
colliders.

« eFPGAs is a promising hardware technology for deploying smart data
readout at the edge in high energy collider experiments.

« Highly generalizable framework for different subsystems (silicon sensor
charges, dual readout/LAr waveforms...)
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