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Pixel Detectors on collider:

• O(100) million pixels

• Petabyte per second data rate (more for future colliders!)

Can’t send everything off-detector

Challenge: how to effectively reduce the data volume transmitted off-detector while preserving useful physics 

information as much as possible?



ML-augmented readout system
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ML-augmented readout system
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What technology can run ML at the front-end?

• Radiation hard

• Low power

• flexible

• Ultra-low latency



What’s Embedded FPGA?
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Compute architectures
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Embedded FPGAs (eFPGAs)
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Basic idea is that you can put reconfigurable logic in your ASIC design.

• Full reconfigurability: can be re-configured just like a regular FPGA 

• Power Efficiency: ASIC implementation means lower power than FPGA (“best of both worlds”)

• Development Time: “plug-and-play” FPGA fabric into ASIC 

• Cost: no need for costly engineer hours or licenses to design an ML chip 

Also, in use as hardware accelerators

See Larry Ruckman's (CPAD 2024) talk for more

https://indico.phy.ornl.gov/event/510/contributions/2159/attachments/1684/3955/CPAD-2024-eFPGA-Ruckman.pdf


eFPGA Development at SLAC
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• SLAC's Technology Innovation Directorate (TID) demonstrated an eFPGA design in a 130nm CMOS 

Multi-Process Wafer (v0)

• Subsequently designed a version 1 “proof-of-concept” eFPGA in 28nm CMOS in 2023 (v1), 1mm x 

1mm

Results are published on 2024 JINST 19 P08023

Both are designed with open-source framework “FABulous” from University of Manchester. Low cost and 

barrier to entry for institutions to participate in microelectronics design.

https://iopscience.iop.org/article/10.1088/1748-0221/19/08/P08023


Machine Learning at the Front-End
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Smart Pixel Dataset

We used the Smart Pixel Dataset*, 

which are pixel clusters produced 

by charged particles (pions) with 

real kinematics from CMS Run 2.

• 0.5 Millions of 20*13*21 (time 

× y position × X position) 2D 

"video" + y-local (y0)

• 13 truth info: positions, pT, 

angles…

* https://zenodo.org/records/7331128 

https://zenodo.org/records/7331128
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Proof-of-concept study

Reduce data rate by momentum classification using a Boosted Decision Tree 

with conifer.
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Proof-of-concept Results

We train a BDT to classify tracks with transverse momentum larger than 2 GeV, quantize and implement 

on the v1 eFPGA in 28nm CMOS. Use only 294 LUTs and nothing else (BRAM_18K, DSP, FF, URAM). 

Latency under 25ns. Hardware test achieves 100% accuracy compared to expected output!

Published 2024 JINST 19 P08023

https://iopscience.iop.org/article/10.1088/1748-0221/19/08/P08023
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Variational Autoencoder for readout

Variational Autoencoder is a type of 

neural network which learns to 

compress and reconstruct input data. 

We propose to use them for off-

detector data compression and 

anomaly detection for readout 

system.

• Latency constraint <25 ns

• Within eFPGA limited resources
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Example reconstruction

The model learns to reconstruct the whole piece with only 4 time slices!
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Variational Autoencoder (VAE)

Kullback–Leibler divergence(KL) is a regularization term in training loss which helped shape the 
latent distribution into gaussian. Then the clipped KL divergence can be used as anomaly score 
with only the mean.
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VAE for Defect monitoring

Clipped KLD can be used to capture detector defects.

Results on arXiv 2411.01118 and submitted to JHEP.

https://arxiv.org/abs/2411.01118
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Conclusions

• Real-time machine learning embedded directly in particle detector 

hardware could revolutionize how these instruments operate at future 

colliders.

• eFPGAs is a promising hardware technology for deploying smart data 

readout at the edge in high energy collider experiments. 

• Highly generalizable framework for different subsystems (silicon sensor 

charges, dual readout/LAr waveforms…)


	Slide 1
	Slide 2: Outline
	Slide 3: Motivation and Physics Context
	Slide 4: Motivation and Physics Context
	Slide 5: ML-augmented readout system
	Slide 6: ML-augmented readout system
	Slide 7: What’s Embedded FPGA?
	Slide 8: Compute architectures
	Slide 9: Compute architectures
	Slide 10: Embedded FPGAs (eFPGAs)
	Slide 11: eFPGA Development at SLAC
	Slide 12: Machine Learning at the Front-End
	Slide 13: Smart Pixel Dataset
	Slide 14: Proof-of-concept study
	Slide 15: Proof-of-concept Results
	Slide 16: Variational Autoencoder for readout
	Slide 17: Example reconstruction
	Slide 18: Variational Autoencoder (VAE)
	Slide 19: VAE for Defect monitoring
	Slide 20: Conclusion
	Slide 21: Conclusions

