

Anomaly Detection and Stability Measurement in the CMS Pixel Luminosity Telescope

Katie Ream

Advisors: Andres Guillermo Delannoy Sotomayor, Francesco Romeo, and on behalf of the BRIL group

December 17, 2024

US LUA CERN 2024 Users Meeting

12.17.2024

Background

- The BRIL (beam, radiation, intensity and luminosity) group delivers lacksquareluminosity measurements to CM9 using the following detectors:
 - PLT: pixel luminosity telescope
 - **BCM1F:** fast beams condition monitor
 - **HF:** hadronic forward calorimeter •
 - **PCC:** pixel clustering counting
 - RAMSES: radiation monitoring system for the evironment and safety
- PLT consists of 16 channels arranged shown to the right and consist of • three silicon sensor planes
 - Luminosity hits are recorded from particles that hit all three planes on that channel
- Want to deliver accurate data to limit uncertainty ($\leq 1\%$) on integrated \bullet luminosity measurement for CMS

Detecting anomalies in data

- We need to be able to detect outliers in the data, so they are removed for the final integrated luminosity calculation
- Also important to track overall shift of luminosity data per channel over longer time interval

3

Example data

Constructing the algorithm

- The algorithm consists of a combination of detectors in adtk, each tuned to detect anomalies that reside above or below certain threshold values or pick up values due to unexpected spikes
 - Documentation here: <u>adtk documentation package</u>
 - Need to ensure we don't flag emittance scan in the process!
- Additionally, BRIL needed a channel selection tool, specifically for 2023 PLT data created a more generalized version
 - Channel selection tool counts the number of anomalies flagged per channel
 - If enough anomalies are flagged, then it checks the distribution of these anomalies
 - If one condition is not met, the channel fails and needs to be inspected further
 - Multiple scenarios are accounted for to account for variety in data

Applying to data

- Example of loading a data file into the algorithm to check if channels have passed or failed inspection
- Second code cell shows further inspection of a failed channel
- Following this, fills are appended to histograms to keep track of the channel shapes as time evolves

Conclusion

- Through visualizing data across runs, the histograms match what is expected for PLT behavior
- This base algorithm has since been expanded upon in ongoing efforts to run on any detector type and is ready to be deployed, with future goals of having it run autonomously
- Let's keep delivering great integrated luminosity for CMS by eliminating one anomaly at a time!

Data up to 2024-10-16 2024 (pp 13.6 TeV 160 CMS LHC delivered: 122.15 fb⁻¹ CMS recorded: 112.70 fb⁻¹ Online
 Total integrated luminosity (fb⁻¹)

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
20 1 May 1 Jun 1 300 1 AUG 10^{ct} 1 Sep Date (UTC)

Thank you to the CERN REU program, University of Michigan, my advisors Andres and Francesco, and SLAC National Laboratory for hosting!

Backup

Example of benefit using both a ratio and difference comparison for anomalies

- Look at the overall histograms (next slides) for each channel and in addition information about all fills examined
- Note: channels 6, 8, 9 are known to be bad so we skip looking at them
- In total 37 fills have been verified for 2023 PLT data

PLT Channel Histogram Data

	Mean	Std	Spread	Std Low	Std High Po	ints Above 1 Sigma	Points Below 1 Sigma	Percent Error	Meets 1 Sigma Expectation
0	1.206005	0.022000	0.099217	1.184004	1.228005	68231	128258	40.190101	No
1	1.236973	0.018575	0.082032	1.218399	1.255548	84810	119969	41.883948	No
2	1.107874	0.020301	0.086400	1.087573	1.128175	86577	94595	37.052747	No
3	1.036991	0.014791	0.065520	1.022200	1.051782	72784	123076	40.049239	No
4	0.953811	0.027954	0.225678	0.925857	0.981766	59834	70306	26.634140	Yes
5	0.801124	0.039704	0.202342	0.761420	0.840828	106145	112757	44.800874	No
7	0.595441	0.030815	0.177896	0.564626	0.626256	122052	84340	42.229752	No
10	1.295180	0.016851	0.100340	1.278329	1.312031	88079	70424	32.405882	No
11	1.278451	0.020782	0.081375	1.257668	1.299233	96179	84794	37.009172	No
12	1.180223	0.021358	0.086059	1.158865	1.201581	94841	116781	43.274447	No
13	1.207884	0.027760	0.165793	1.180124	1.235645	83452	88160	36.043249	No
14	0.947960	0.006992	0.068808	0.940968	0.954952	32105	16632	9.966096	Yes
15	0.948098	0.012585	0.078030	0.935513	0.960683	39203	6176	9.279428	Yes

Results

14

Results

15

Results

