

Bumblebee: Foundation Model for Particle Physics Discovery

AJ Wildridge, Jack Rodgers, Ethan Colbert, Yao Yao, Mia Liu, Andy Jung

2024 US LUA Annual meeting

arXiv:2412.07867v1

What are **Foundational** Models?

- Foundational models learn representations of their inputs that can be used in many downstream tasks
- Popularized in natural language processing (NLP)
- Enables **state of the art** performance where supervised techniques struggle

Gemini

What are Foundational Models?

- ChatGPT Foundational models learn representations of their inputs that can be used in many Can we create a foundation model to discover new phyiscs?
- Enables state of the art performance where supervised techniques struggle

Bumblebee

arXiv:1810.04805

- Same spirit as BERT
- Particle physics is permutation invariant
 →remove positional encodings
- Particle vector learned input embeddings in Bumblebee
- 8 encoder layers, 768-dimensional hidden state, 16 self-attention heads
 → 57M parameters

Bumblebee – Pre-training

Input Embedding

- Masked pre-training task
 - 50% of the time randomly mask a particle
 - 25% (25%) of the time mask all reco (gen) particles
- Backpropagate on MSE loss on masked particles

Bumblebee – Pre-training Results

- Pretrained on dileptonic $t\bar{t}$ events
- Pre-training task of mask gen and predict gen is akin to neutrino reconstruction
- Bumblebee's "reconstruction" outperforms supervised ML techniques

Bumblebee – Fine-tuning

- Always give reco, mask gen
- Classification tasks: add masked vector (1, 0, ..., 0)/(0, ..., 0) for signal/bkg
 - Fine-tuned on predicting this vector
- We consider two fine-tuning tasks:
 - Bound tt state (toponium) discrimination
 - tt initial state classification

Bumblebee – Downstream task performance

9

Summary

- Bumblebee is a foundational model and when fine-tuned on 2 downstream tasks <u>competitive w/</u> <u>supervised methods</u>
- Plenty of exciting use cases for Bumblebee
 - Easily extend to other event topologies
- Pre-training objective alone very useful

2024 US LUA Annual Meeting

Thanks!

awildrid@purdue.edu

Bumblebee – tt Initial State Classification

- Initial state is very sensitive to discovering new physics
 - e.g. *A_C* in top quarks Phys. Lett. B **707**, 92 (2012)
- Also applicable for top quark spin / property measurements
 - gg initial state is spin singlet at production threshold [*Eur. Phys. J. Plus* **136**, 907]
- Bumblebee sees improvement over MLP & Transformer
- <u>Bumblebee improves state-of-the-art</u> on a difficult task

Bumblebee - Datasets

- 7M tt signal sample produced using POWHEGv2 event generator at nextto-leading-order (NLO)
- 1M $\eta_{\rm t}$ signal sample produced using MG5 aMC@NLO generator at LO
- Parton showering and hadronization using Pythia8 in all samples
- Delphes detector simulation
- Trained after object & event selection

Foundational Models

- word2vec & GloVe created "thought vectors"
 - e.g. (king man) + woman = queen
 - Powerful learned embeddings for other tasks

Male-Female

• <u>BERT, GPT</u> and <u>ELMo</u> moved to DNNs / Transformers for this task

Bidirectional **E**ncoder **R**epresentations from Transformers (BERT) arXiv:1810.04805

- Used only the encoder portion of transformer
- Two tasks: pre-training and fine-tuning
- Pre-trained model learns a vector embedded representation that can be Mask LM

used for downstream tasks

T_N T_{ISSER} T₁'

BERT

Unlabeled Sentence A and B Pa

Pre-training

Masked Sentence

T.,'

Probabilities

Question Answer Pai

Positional Encoding