ATLAS Status

US LHC User Association Meeting

December 17th, 2024

Zhi Zheng, on behalf of ATLAS Collaboration

SLAC National Accelerator Laboratory

ATLAS EXPERIMENT

LHC / HL-LHC Plan

LHC / HL-LHC Plan

Run 4 - 5...

.6 - 14 TeV

Outline

ATLAS data-taking and operations

New physics results — my pick

HL-LHC upgrades

2041 5 to 7,5 nominal Lumi 3000 fb⁻¹ 4000 fb⁻¹ 4000 fb⁻¹ PHYSICS

DEFINITION

EXCAVATION

BUILDINGS

2024: An extremely impressive year of data -taking

• Exceeded predictions: Delivered an integrated luminosity of 125 fb^{-1}

- Surpassed the Run-2 dataset (147 fb⁻¹) in Run 3 (183 fb⁻¹)
- PbPb 5.4 TeV 1.82 nb⁻¹

ATLAS Operation Performance in 2024

Data quality efficiency of 94%, with 110 fb⁻¹ good for physics

- On the rise throughout 2024 (and Run 3)
- 2 nd best data taking year so far (at higher pileup)

ATLAS Operation Performance in 2024

Data quality efficiency of 94%, with 110 fb⁻¹ good for physics

- Improved performance with Phase-I trigger system
- Large inefficiencies due to downtime of magnets

L1 Calo +LAr shaper turn on and better Efficiency

L1Muon with NSW showed reduced fake rate

A Selection of 2024 public results

Run 2 publication efforts still in full swing

Run 3 publication efforts starts ramping up, more are coming in 2025

A Selection of 2024 public results

Where we stand now:

- Precision measurements of the Standard Model
- Searches for physics beyond Standard Model

What Lies Ahead:

- New techniques and ML/AI tools improve performance
- * A very biased selection, curated by Zhi Zheng!

Improvements from Performance

arXiv:2407.15627 arXiv:2412.04370 ATL-PHYS-PUB-2024-015

Precision of objection reconstruction much beyond the designed goals

Advanced ML/AI tools and new method

E/p Deconverlution method improve jet energy scale uncertainty < 1%

Bayesian neural network (BNN)

improves resolution and extend linearity region

Transformer improves resolution for Higgs mass ~ 23%

Probing the Higgs Self-Coupling

Combined

0

10

New JHEP02(2024)037 New JHEP 08 (2024) 164 New boosted part Phys. Lett. B 858 (2024) 139007 Improved JHEP 01 (2024) 066 Improved Phys. Rev. D 110 (2024) 032012

95% CL upper limit on HH signal strength μ_{HH}

2.9

2.4

Precision Higgs: Towards Differential Measurements arXiv:2407.16320 arXiv:2407.16320

$t\bar{t}H(\rightarrow b\bar{b})$

Using Transformer NN for Higgs $p_{T}% \left(p_{T}^{\prime}\right) =p_{T}^{\prime}\left(p_{T}^{\prime}\right) =p_{T}^{\prime}\left(p_{T}^{\prime}\right) +p_{T}^{\prime}\left(p_{$

Total uncertainty reduced by factor of ~2 4.6 (5.4) σ observed (expected)

Higgs Rare Processes

A improvement by a factor of 3 for VHcc

- Current results include only resolved jets
- Further improvements are expected with the addition of the boosted region

First Direct constraints on κ_4 :

• 95% CL upper limit on SM HHH production cross section: 59 fb

The results are mainly limited by statistics

Standard Model Measurements

arXiv:2411.09962 arXiv:2407.13473

Searches for Physics Beyond Standard Model

<u>JHEP 08 (2024) 013</u> <u>JHEP 09 (2024) 005</u>

Search for additional Higgs Boson with interference in $t\overline{t}$ decays

First LHC search for dark mesons decaying to top and bottom quarks

New data, New triggers and New methodology

New Methods for Statistical Inference

ATLAS Phase-II upgrade

New Muon Chambers

Inner barrel region with new RPC and sMDT detectors

New Inner Tracking Detector (ITk)

All silicon, up to $|\eta| = 4$ High-granularity Pixel and Strip systems

Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz Improved High-Level Trigger (150 kHz full-scan tracking)

Electronics Upgrades

LAr Calorimeter Tile Calorimeter Muon system

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0) Low-Gain Avalanche Detectors (LGAD) 30 ps track resolution

Additional upgrades

Luminosity detectors (1% precision goal) HL-ZDC Offline software and computing

Highlights

Phase-II upgrade projects have advanced towards production

Many Areas are close to critical path

Summary

Well into Run-3 with a fantastic year of data-taking, excellent performance and good progress with Phase-II upgrades

- Continue to search for physics beyond the SM
- Working on high-precision SM measurements
- Exploiting new AI/ML tools and methodology that help us pushing boundaries

With new data, new method and new detector ahead, road ahead is filled with exciting physics

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Bonus Content

Jet Energy Scale

arXiv:2407.15627

Old Method: In situ calibration with Z+jets pT balanced method

• Limited kinematic reach

New Method: Deconvolution method rely on single particle E/p measurement

Response correction = $R_{data}/R_{MC} = \Sigma$ (shifted or smeared hit energies) / Σ (nominal hit energy)

Deconverlution

Response correction = R_{data} / R_{MC} = Σ (shifted or smeared hit energies) / Σ (nominal hit energy)

Precision calibration of calorimeter signals

BNN: Local topo-cluster calibration using Machine Learning

- Improved response measurements in jets, hadronic recoil and event shape
- Assess per-cluster systematic uncertainties for bottom-up approaches, add handle for cluster selection based on signal quality

Training: Weights linking the nodes of adjacent **SL** layers are described by weight distributions $q(\theta)$

Inference: Learned weight distributions $q(\theta)$ are sampled *N* times to generate a set of network parameters θ_s and thus an ensemble of networks

Precision calibration of calorimeter signals

ZHI ZHENG

B-jet calibration with Transformer

B-jet calibration with Transformer

ATL-PHYS-PUB-2024-015

ttH bb analysis

arXiv:2407.10904

Improvements comes from b-tagging: MV2c10 60% WPs → DL1r 70%

• More improvements is expected to come with new GN2 tagger * bjets regression

New $t\bar{t}$ Monte Carlo and tt+b-jet modeling: more improvements will come from the latest results of $t\bar{t}$ +HF

ttH bb analysis

arXiv:2407.10904

Improved signal and background categorization and reconstruction on multi class NN with transform

Control Regions

Single-

lepton

Event?

NN

No

*t*t̄ + ≥ 2*b* CR 3

Yes

tt + ≥2b CR 2

Reconstruction

Boosted

ZHI ZHENG F

tt̄ + ≥ 2*b*

CR 1

 $H \rightarrow \tau \tau$

B meson Lifetime

arXiv:2411.09962

$J/\psi(\mu^+\mu^-)$

- $\mu^+\mu^-$ refitted to a common vertex
- $\chi^2/ndof < 10$
- divided into 3 pseudorapidity bins [EE, BE, BB]

$K^{*0}(K^{\pm}\pi^{\mp})$

- *p*_T(*K*[±]) >1 GeV
- $p_T(\pi^{\mp}) > 0.5 \text{ GeV}$
- *m*(K[±]π[∓]) ∈ (846, 946) MeV
- *p*_T(*K*[∗]) >3.5 GeV

B meson Lifetime

arXiv:2411.09962

Systematic uncertainty reduced by a factor of 4.7, improvements comes from :

- insertable B-layer
- better ID alignment

 $au_{B^0} = 1.5053 \pm 0.0012 (\text{stat.}) \pm 0.0025 (\text{sys.}) \text{ ps}$

• More statistics

 $\Gamma_d = (0.63^{+0.11}_{-0.07}) \text{ ps}^{-1}$ $\Gamma_d / \Gamma_s = (0.9905 \pm 0.0022(\text{stat.}) \pm 0.0032(\text{sys.}) \pm 0.0057(\text{ext.}))$

Phys. Rev. D 87, 032002 (2013)

Source of uncertainty	Systematic uncertainty [ps]	Systematic uncertainty	$\sigma_{ au}^{ m syst}~({ m fs})$	$\sigma_m^{ m syst}$ (Me
ID alignment	0.00108	Selection/reco bias	12	0.9
Choice of mass window	0.00104	Delection/reco. blas	12	0.0
Time efficiency	0.00130	Background fit models	9	0.2
Best-candidate selection	0.00041	B_d^0 contamination	7	0.2
Mass fit model	0.00152	Residual misalignment	1	
Mass-time correlation	0.00229	nesiduai inisangiment	1	
Proper decay time fit model	0.00010	Extra material	3	0.2
Conditional probability model	0.00070	Tracking $p_{\rm T}$ scale		0.5
Fit model test with pseudo-experiments	0.00002	Total avatamatia arror	17	11
Total	0.0035	Total systematic error	11	1.1

ttbar+HF

arXiv:2410.16835

LLP

LLP

New data, New trigger and New method

Using new trigger for LRT in run3 Large Radius Tracking (LRT) introduced in the HLT for Run 3[<u>JINST 19 (2024) P06029</u>]

Magnetic monopole search

Mainly use Pixel detector and Zero Degree Calorimeters (ZDC)

Magnetic monopole search

Analysis improvements:

- The use of dedicated trigger, improves data statistics by a factor of approximately 1600
- Introduced of validation region, very close to signal region, ensuring background estimation
- Tighter requirements for pixel clusters and IBL hits- better suppress background
- Dedicated selection to suppress the impact from noisy Pixel modules (modules masking, geometrical cuts)
- Track selection

arXiv:2408.11035

New Methods for Statistical Inference

arXiv:2412.01548

Neural simulation-based inference (SBI) benefit physics analyses:

$$\frac{P(x \mid S)}{P(x \mid B)} \sim \mu \cdot \frac{P(x \mid S)}{P(x \mid B)}$$

Traditional way of building MVA for Signal vs Background would work

Standard Signal vs Background classification

New Methods for Statistical Inference

arXiv:2412.01548

Neural simulation-based inference (SBI) benefit physics analyses:

Standard Signal vs Background classification

New Methods for Statistical Inference

Neural simulation-based inference (SBI) benefit physics analyses:

ITK Highlights

ITk Pixel

- Pixel production progresses well with sensors and FE ASIC; hybridisation has started with 2 (of 4) vendors (hope to qualify 3rd soon), some bare local supports & services in production
- Many areas close to critical path, tightly following up

ITk Strip

From C. Bernius

- Many areas (sensors, ASICs, EOS, bus-tapes, cores, etc.) in production; sites ready for production
- Module site qualification well advanced (94% completed)
- Strip sensor fracturing of cold mounted modules under intense follow up
 - Solution with 50 μm kapton interposer developed and successfully tested for the barrel down to -70 °C
 - Initial test on an endcap ½ petal shows no evidence of cracks down to -65 °C
 - Final reviews this year, module production start Jan 2025

Production of ITk common items and structures proceeds well

ITkPixV2 wafer

ITk Pixel guad modules

Other components Highlights

Other systems progressing well, no critical issues

- LAr: ASICs in production with excellent test results, completing design of electronics boards (FEB2, LASP)
- Tile: good overall progress, comfortable contingency
- HGTD: pre-production LGAD and ALTIROC hybrids under test; Demonstrator with 54 modules being tested in clean room with CO2 cooling
- Muon: good progress on sMDT, finalise RPC readout electronics, started RPC readout chain tests with prototypes/emulators, fixing gas-gap leaks
- **TDAQ**: good progress in many areas (online software, dataflow, EF Tracking technology choice, ...), more effort identified for delayed NSW trigger processor

From C. Bernius

Detector system improvements in 2024

Across the ATLAS detector subsystems:

Improvements of operational robustness and reduction of inefficiencies during data-taking

⇒ visible in the reduction of the small dips that indicate a brief interruption of data-taking

Detector status 2024

Inner Detector (Pixel, SCT, TRT): Good status

No limitation to operating ATLAS in 2026; updated projections to $\sim 550 \text{ fb}^{-1}$ indicate that radiation damage effects can be mitigated

Forward: AFP suffers from backgrounds / increased radiation, ToF had to be removed from the tunnel; LUCID good; ZDC installed in TS2 for HI programme

TDAQ: No limitations with DAQ system; Trigger: Phase-I L1 systems in operation, better efficiency with reduced background trigger rates; L1 & HLT deal well with higher lumi and pileup; HLT CPU sufficient

Calorimeters:

LAr: Good status Tile: FE electronics cooling leaks at limit but stable so far; 3.5 modules switched off (1.4%)

Muons:

MDT, TGC: Good status

RPC: Inlet repairs and resin application during last EYETS did not reduce leak rate significantly; increase effort to consolidate during upcoming YETS (145 person-weeks)

NSW: DAQ stable; sTGC pad & MM triggers operating, sTGC strips under work; Rising number of sTGC HV failures at inner radius (105/256 (41%), in total 180/1024 (18%))

Mitigations: lowering HV reduces failure rate; tests with spare sectors underway (irradiation, HV stress)

Magnets: 7 solenoid and 8 toroid slow dumps; Efforts to enhance magnet operational resilience ongoing (water cooling, electrical perturbation, cryo system)

Offline computing:

Tier0 reconstruction operating smoothly (~8 GB/s)

Data quality

ATLAS pp Run-3: 2024														
Trigger	Inner Tracker			Calori	meters	Muon Spectrometer			Magnets		Global			
L1+HLT	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	TGC	MM	sTGC	Solenoid	Toroid	Lumi. calib.	Other
99.7	99.7	99.8	99.9	99.8	99.3	100	99.8	99.8	100	100	98.3	96.6	99.6	99.9
Good for physics: 93.8% (110 fb ⁻¹)														

Luminosity weighted good data quality efficiencies (in %) in 2024 during stable beam operations of pp physics runs at $\sqrt{s} = 13.6$ TeV, corresponding to an integrated luminosity of 110 fb⁻¹, for 118 fb⁻¹ pp data recorded. Technical runs such as luminosity calibration scans totalling 0.6 fb⁻¹ recorded are not accounted for in the efficiencies.

When the stable beam flag is raised, the tracking detectors initiate a "warm start", which involves ramping up the high-voltage and activating the pre-amplifiers for the Pixel and SCT systems. The inefficiency due to this, as well as the DAQ inefficiency, are not included in the table above, but accounted for in the ATLAS recording efficiency.

The good-for-physics luminosity is 110 fb^{-1} for all analyses, except those relying on *b*-jet triggers, where the data quality efficiency is slightly lower (93.5%) due to the brief time needed to measure the online beamspot at the start of a run.

