E331 - Neural network based tuning to exploit machine-wide sensitivities in pursuit of high beam quality

FACET-II AARD Long Term Planning Meeting August 22, 2024

Major limitations in the way accelerator tuning is done:

- Piecemeal tuning of subsystems (known to be sub-optimal)
- Indirect use of high-dimensional diagnostics (e.g. images)
- · Often a lack of accurate online models
 - ightarrow Potentially limiting factors in control of extreme beams

More global view can enable better control:

- Fully exploit unknown system-wide sensitivities + nonlinearities
- Faster switching between setups (if using global representation of machine)
- Better handling of parameter tradeoffs (e.g. jitter, matching, longitudinal phase space)

Comprehensive, system-wide control is likely to be a key factor in improving custom control of extreme beams, but this is a difficult task

Build out on sample-efficient methods on subsystems first (e.g. Bayesian approaches), then transition to more comprehensive approach (reinforcement learning, neural networks leveraging learned system model information)

Incorporate ML-based tuning into FACET-II operation to aid experiment goals along the way

ML Experiments - E331

What worked (since last run)

- Emittance tuning demo in injector (BAX 20x faster than vanilla BO)
- Sextupole tuning demonstrated repeatedly and began integration into E300 → improved plasma performance (and only just scratching surface of possibilities!)
- Smart data sampling for characterization / system model calibration Bayesian Exploration (to gather data), multi-fidelity model calibration

What didn't work

- Compute limitations: long inference times for BO → *GPU* for control system ordered and on its way (expect several orders of magnitude faster)
- Challenges with automated data acquisition (e.g. wirescan GUI need server mode human in the loop to take measurement; error prone / need to identify by eye) → need to think about for future observables we want to include in automated tuning
- Challenges with writing/reading settings in SCP through python → need to set up ahead of time for controllable variables/read-backs we + users may want
- For E300 tuning, simple metrics worked but need refinement (algo. will do exactly what its told to do....) → *examples of measurements* + *working with plasma side ahead of time will help to set these up*
- Need way of triggering the DAQ from python

- Information theoretic • approach to simulations
- Learn correlations ۲ between different model fidelities
- Use multi-fidelity • Bayesian optimization to select model fidelity and next optimization variables

500

500

500

Finding Sources of Error Between Simulations and Measurements

1.4

(1.2 - 1.2 - 1.0 -

8 0.4 SW2

Without

 $\sigma_x NN$

 σ_x IMPACT-T

 σ_x meas.

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets)
time-varying changes (e.g. temperature-induced phase calibrations)
Want to identify these to get better understanding of machine performance
→ ML model allows fast / automatic exploration of error sources in high dimension

Speed and differentiability of ML models enables rapid identification of error sources between idealized physics simulations and real machine

Background Leveraging Online Models for Faster Optimization

Combining existing models with BO → important for scaling up to higher dimension

Prototyped on LCLS injector variables: solenoid, 2 corrector quads, 6 matching quads objective: minimize emittance and matching parameter

Even prior mean models with substantial inaccuracies provide a boost in optimization speed

Digital Twin Infrastructure

Ecosystem of modular tools (can use independently)

LUME - simulation interfaces/wrappers in Python

lume-model - wraps ML models, facilitates calibration

lume-services – online model deployment and orchestration

distgen – flexible creation of beam distributions

Integration with MLFlow for MLOps https://www.lume.science/

- Live physics simulations and ML models now linked between SLAC's HPC system (S3DF) and control system
 → run with Kubernetes and Prefect
- Working with NERSC to swap between S3DF/NERSC resources
- Beginning work on MLOps aspects that will be used in continual learning research

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way

VCC

BC1₂₅₀ MeV BC2 4.3 GeV

14 GeV

undulator

Goals For The Coming Run

Two themes: AI/ML R&D items (purple) and facility/experiment impact items (orange)

- Two-bunch tuning / LPS tuning ML development
 - Have algorithms to try for this \rightarrow need to set up with diagnostics/PVs to adjust
 - Prototype w/ previous data (e.g. image analysis) and simulations
 - Need XTCAV or other diagnostics we want to use for metrics ready
 - Incorporate additional diagnostics / objectives / constraints (e.g. LPS plus keep losses low, examine spectra?)
- Sextupole tuning
 - Use priors / correlations from previous runs (form model based on data or sim)
 - Improve integration with plasma metrics
 - Refine diagnostic analysis/setup for objectives/constraints
 - Deliver to ops + in Badger (AD PD funding to support)
- Model-based ML tuning model dev + use as priors for BO and model-based RL
 - Path to faster/higher-precision tuning by adjusting more variables together across machine
 - Need model + tackling in stages: injector, linac, plasma
 - Incorporate calibrated injector system model into tuning
 - Extend model calibration downstream (e.g. up to IP) LPS then transverse
 - Incorporate downstream system model into tuning
- Expand tuning scope (driven by operations need)
 - Emittance tuning to downstream (emittance preservation)
 - Would need some help in getting 3-wire measurement set up etc
 - Multiple objectives /constraints in tuning (e.g. emittance / losses, LPS, plasma) → want suggestions on what would be highest impact for operation and experiments

Publications

Time to data / pub

	High level science goals	First high impact publication	How to get from here to there
E-331	Comprehensive ML-based control for new capabilities (higher quality beams faster) Two-bunch / LPS customization	 BAX paper already published (mid impact) Contribute to E300 paper (impact of ML on E300 tuning – sextupole tuning) (now - ?) Model calibration for injector (mid impact, now - 0.25 yr) and linac (now - 0.5 yr?) LPS single and two-bunch customization (0.5 - 1 yr? sooner?) Model calibration for injector + linac (0.25 - 0.5 yr?) 	Need reliable diagnostics + analysis for LPS (XTCAV, others?) Need to set up fast analysis from BSA data or epics pulls (+ launch BSA data taking from python) Need to sort out setting PVs from python in SCP Need to gather historical/new data + latest physics models for two-bunch, single bunch for injector + linac

Backups

Deep Reinforcement Learning

- Control policy maps states to actions
- Policy is learned over time based on performance (quantified by the "reward")
- Neural network enables use of diverse signal types (e.g. scalars, images, time series)
- Often learns a system model simultaneously (map states + actions to expected reward)

Appeal for accelerator control:

- Suitable for large, nonlinear systems
- Exploit machine-wide sensitivities + directly use complicated diagnostic information
- Leverage information from past observations
- Transfer between similar designs
- Well-established in other fields (e.g. robotic control)
 → but accelerators have unique challenges

Deep RL is well-suited to accelerator control, but dedicated R&D is needed to bring it to full fruition

Many successes with Bayesian Optimization (+ algorithmic improvements)

Comprehensive review of advanced BO for particle accelerators: https://arxiv.org/html/2312.05667v2

Broad Research Program at SLAC in AI/ML for Accelerators

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing portable software tools to support end-to-end AI/ML workflows, (3) helping integrating these into regular use

Online prediction with physics sims and fast/accurate ML system models

Efficient, safe optimization algorithms

Challenging problems: e.g. sextupole tuning

Anomaly detection

ML-enhanced diagnostics Rabid analysis/virtual diagnostics

Shot-to-shot predictions at beam rate

Adaptation of models and identification of sources of

deviation between simulations and as-built machine

Combining physics and ML for better performance

Hysteresis-aware optimization Difference BO on sys. with Hybrid BO on hysteresis sys. with hysteresis $\beta = 0.1$ $\beta = 0.1$ $\beta = 0$

Differentiable simulations + ML for 6D

y (mm) p, (mrad) p,

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities

Al/ML enables fundamentally new capabilities across a broad range of applications \rightarrow highly promising from initial demos.