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Major limitations in the way accelerator tuning is done: "
* Piecemeal tuning of subsystems (known to be sub-optimal)
* Indirect use of high-dimensional diagnostics (e.g.images)

* Often a lack of accurate online models
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—> Potentially limiting factors in control of extreme beams
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More global view can enable better control:

Source: i Qiang

* Fully exploit unknown system-wide sensitivities + nonlinearities

* Faster switching between setups (if using global representation of

machine)

 Better handling of parameter tradeoffs (e.g. jitter, matching,
longitudinal phase space)

Comprehensive, system-wide control is likely to be a key factor in
improving custom control of extreme beams, but this is a difficult task
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Final Focus &
Experimental Area

SLAC Linac Tunnel (Sectors 10 — 19) W-Chicane

Build out on sample-efficient methods on subsystems first (e.g. Bayesian approaches), then
transition to more comprehensive approach (reinforcement learning, neural networks leveraging
learned system model information)

Incorporate ML-based tuning into FACET-Il operation to aid experiment goals along the way



ML Experiments - E331

What worked (since last run)

What didn’t work

Emittance tuning demo in injector (BAX - 20x faster than vanilla BO)

Emittance (mm-mrad)

Sextupole tuning demonstrated repeatedly and began integration into E300
— improved plasma performance (and only just scratching surface of
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Smart data sampling for characterization / system model calibration - Bayesian
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Exploration (to gather data), multi-fidelity model calibration

-
B
t=)

I~
S

Compute limitations: long inference times for BO — GPU for control system
ordered and on its way (expect several orders of magnitude faster)
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Challenges with automated data acquisition (e.g. wirescan GUI need server
mode — human in the loop to take measurement; error prone / need to identify

38

Sextupole tuning at IP

—— xrms
yrms

by eye) — need to think about for future observables we want to include in oo
automated tuning

Challenges with writing/reading settings in SCP through python — need to set T ey
up ahead of time for controllable variables/read-backs we + users may want
For E300 tuning, simple metrics worked but need refinement (algo. will do
exactly what its told to do....) — examples of measurements + working with
plasma side ahead of time will help to set these up

Need way of triggering the DAQ from python
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Background

Multifidelity Optimization
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Background
Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:
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Speed and differentiability of ML models enables rapid identification of error sources between

idealized physics simulations and real machine




Background

Leveraging Online Models for g s = oo
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Background

Digital Twin Infrastructure

r

Ecosystem of modular tools (can use independently)

LUME — simulation interfaces/wrappers in Python
lume-model — wraps ML models, facilitates calibration

ume-services — online model deployment and orchestration

distgen — flexible creation of beam distributions

Integration with MLFlow for MLOps

https://www.lume.science/
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Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way



Background

Reinforcement Learning

Appealing for moving toward large-scale,
comprehensive control of accelerators

-> Many similarities to robotics applications
-> Ability to learn from many observations

-> Multi-modal, high-dimensional data

Gu, etal., 2016

Nagabandi, et al., 2019
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Goals For The Coming Run

Two themes: AI/ML R&D items (purple) and facility/experiment impact items (orange)

. Two-bunch tuning / LPS tuning ML development
- Have algorithms to try for this— need to set up with diagnostics/PVs to adjust
- Prototype w/ previous data (e.g. image analysis) and simulations
- Need XTCAV or other diagnostics we want to use for metrics ready
- Incorporate additional diagnostics / objectives / constraints (e.g. LPS plus keep losses low,
examine spectra?)

. Sextupole tuning
- Use priors / correlations from previous runs (form model based on data or sim)
- Improve integration with plasma metrics
- Refine diagnostic analysis/setup for objectives/constraints
- Deliver to ops + in Badger (AD PD funding to support)

Model-based ML tuning — model dev + use as priors for BO and model-based RL
- Path to faster/higher-precision tuning by adjusting more variables together across machine
- Need model + tackling in stages: injector, linac, plasma

= Incorporate calibrated injector system model into tuning
| Extend model calibration downstream (e.g. up to IP) — LPS then transverse
| Incorporate downstream system model into tuning

Expand tuning scope (driven by operations need)
- Emittance tuning to downstream (emittance preservation)
= Would need some help in getting 3-wire measurement set up etc
- Multiple objectives /constraints in tuning (e.g. emittance / losses, LPS, plasma) — want
suggestions on what would be highest impact for operation and experiments
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Publications

Time to data / pub

E-331

High level
science goals

Comprehensive
ML-based control for
new capabilities
(higher quality beams
faster)

Two-bunch / LPS
customization

First high impact publication

BAX paper already published (mid impact)
Contribute to E300 paper (impact of ML on E300 tuning —
sextupole tuning) (now - ?)
° Model calibration for injector (mid impact, now - 0.25 yr) and
linac (now - 0.5 yr?)
° LPS single and two-bunch customization (0.5 - 1 yr? sooner?)
° Model calibration for injector + linac (0.25 - 0.5 yr?)

How to get from here to there

Need reliable diagnostics + analysis for
LPS (XTCAV, others?)

Need to set up fast analysis from BSA
data or epics pulls (+ launch BSA data
taking from python)

Need to sort out setting PVs from python
in SCP

Need to gather historical/new data + latest
physics models for two-bunch, single
bunch for injector + linac



Backups



Deep Reinforcement Learning

new system state, reward

Neural Network
(control policy)

actions

Control policy maps states to actions

Policy is learned over time based on performance

(quantified by the “reward”)

Neural network enables use of diverse signal types

(e.g. scalars, images, time series)

Often learns a system model simultaneously (map

states + actions to expected reward)

Appeal for accelerator control:

Suitable for large, nonlinear systems

Exploit machine-wide sensitivities + directly use

complicated diagnostic information

Leverage information from past observations

Transfer between similar designs

Well-established in other fields (e.g. robotic control)

-> but accelerators have unique challenges

Gu, etal., 2016
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Deep RL is well-suited to accelerator control, but dedicated R&D is needed to bring it to full fruition




Many successes with Bayesian Optimization (+ algorithmic improvements)
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Broad Research Program at SLAC in Al/ML for Accelerators

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing
portable software tools to support end-to-end Al/ML workflows, (3) helping integrating these into regular use
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Output constraints learned on-the-fly

Adhere to constraints and balance multiple targets

Adaptation of models and identification of sources of ML-enhanced diagnostics

Combining physics and ML for better performance
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AI/ML enables fundamentally new capabilities across a broad range of applications = highly promising from initial demos.




