E304 discussion

Chaojie Zhang (E300 collaboration)

Aug 22, 2024

1-4 Torr H2 static fill, gas jet backing pressure 100 psi

4.1 m long static fill gas between Be window

March run: First saw downramp injected electrons

June run: More systematic optimization + Higher energy gain + emittance measurement + more data

From the measurements what we would like to understand

- Loaded transformer ratio
 - Drive beam energy depletion
 - Highest energy gain (with small energy spread)
 - To what extent is the wake loaded
- Small emittance
 - may have saturated after >100 betatron cycles
- Brightness booster
 - emittance (measured)
 - peak current of the injected bunch

Confirm it's downramp injected bunch

E304_06335, static fill 3.4 Torr, gas jet backing pressure 100 psi, e- beam height 2 mm. Quad 1.8 GeV, Dipole 3.5 GeV, OFF/ON scan 4

- max charge loss ~140 pC (due to drive bunch energy depletion)
- 57 shots show charge excess
- charge excess means injection
- measured charge excess is the lower limit of injected charge due to charge loss of the driver

Gas jet delay scan

The delay of the e- beam with respect to the gas jet firing time was scanned from -2 to 10 ms (negative: e- beam arrives earlier).

The opening time of the gas jet is 1 ms (to limit gas load).

Only when the timing is right, we saw downramp injection signals- another piece of evidence for attributing the observed signals to downramp injection.

Drive beam energy depletion

- direct evidence: energy down to 2 GeV
- indirect evidence: large charge loss

ata		March	June	June with injec
	Pressure	3.4 Torr	1.6 Torr	4.0 Torr
	<i>min energy (spectrometer limited)</i>	1 GeV	2 GeV	N/A
	charge loss	~150 pC	~300 pC	~500 pC

From the measured min energy and charge loss data at lower pressures, we can infer that in the higher pressure datasets where we saw injection, pump depletion must have occurred.

Accelerated beam parameters- Highest energy gain (26 GeV)

E304_08878, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+100 cm, Quad 15 GeV FILG+3m to LFOV, Dipole 25 GeV

Accelerated beam parameters- Smallest energy spread

E304_08877, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+75 cm, Quad 15 GeV FILG+3m to LFOV, Dipole 25 GeV

Energy gain: 20 GeV, energy spread (rms): 0.47%, Charge: ~2.5 pC

Accelerated beam parameters- Smallest energy spread

E304_08877, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+75 cm, Quad 15 GeV FILG+3m to LFOV, Dipole 25 GeV

Accelerated beam parameters- emittance

E304_08900, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+75 cm, Quad 17 GeV BeWin2 to DTOTR, Dipole 17 GeV

Accelerated beam parameters- emittance

E304_08901, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+75 cm, Quad 17 GeV BeWin2 to DTOTR, Dipole 17 GeV

Emittance estimate from the divergence of the beam

Emittance of the drive beam

at the beginning of the shift (6:10 PM) $\varepsilon_n = 9.7 \ \mu \text{m}, \beta \approx 1.09 \text{ m}$ rms beam size on DTOTR2 [µm] 12 150 100 50 0 -2 -6 2 6 M12

dataset E304_08860

at the end of the shift (1:40 AM) $\varepsilon_n = 22.8 \ \mu \text{m}, \beta \approx 1.17 \text{ m}$

dataset E304_08910 pixel size 3.6 µm

Current profile- work in progress

$k_p R_b \approx 2\sqrt{\Lambda} \approx 2.12$ driver $\Lambda \approx 1.124$

Idea:

Known drive bunch parameters and plasma density ->

Unloaded wake using PIC simulation/ theoretical model ->

Iteratively change current profile of the injected bunch to load the wake ->

Until the resulting energy spectrum matches the measured one

Current profile- work in progress

optimized (not fully) current profile using genetic algorithm tried ~270,000 possible current profiles

		-	\mathbf{r}	-	-	-	
h	-	-	λ.	-	-		
Į,			5	-	-		
£,		Ξ.		-	-		
I	rl	JI	n			_	Н
	-	-	Υ.		-		Ы
	-	-	${\bf k}_{i}$		-		н
	-	-	10	-	-		н
	-	-	\mathbf{r}	-	-		
_	_	_		_	_	_	Н
	-	-	5	-	-		н
	-	-	Ъ.	-	-		н
		-	5	-	-	-	
		-	\mathbb{R}^{2}	-	-		
						_	Н
	-	-	10	-	-		
			÷.		-		
			κ.		-		
	-	-	5		-		
						_	
			5.		-		
			\mathbb{R}^{2}		-		
	-	-	${\bf u}_{i}$		-	- 1	
			ъ.,				
		-	÷.				
			1				
			λ.				
			λ.				
			1				
			Υ.				
			ω.				
			1				
	-	-		-	-	-	
			1				
		1	£.,				
	2		Ę.		_		
	Ξ.		÷.				
	-	1	1			1	
						_	-
					1	2	ſ
							١.

Two bunches injected into the first and second bubbles

E304_08873, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG50 cm, Quad 13 GeV FILG+2m to LFOV, Dipole 20 GeV

Accelerating gradient retrieved from plasma length scan

Plasma length calculated using betatron analysis of unmatched beam

E304_08880, 4 Torr, 100 psi, beam height 2 mm. 50 cm beta at FILG+75 cm, Quad 15 GeV FILG+3m to LFOV, Dipole 25 GeV

ssues

drive beam characterization- we measured sigma_z 11 μ m, is that real?

DAQ/Camera issues

unknown plasma length, density profile

difficult to align DTOTR1 when measuring small emittance (depth of focus of the camera is small)- put markers on the foil to help focus the camera?

currently heavily rely on the jittery current spikes in the beam to initiate ionization, leading to unstable results

2-cm gas jet, 5 Hz, 100 psi backing pressure, equilibrium pressure at IP is ~4 Torr how to remove the static-fill gas when we want to do the gas-jet only configuration (instead of the gas-jet in static fill configuration)

Drive beam parameters

June 3, before the shift

charge 1.6 nC n_b~5e16 cm⁻³

n_p~1.4e17 cm⁻³ (4 Torr)

