Multilateration Method for Pre-Alignment of HEPS Storage Ring

Lu Shang Institute of High Energy Physics, Chinese Academy of Sciences Oct 7 - Oct 11, 2024, IWAA

- 1. Introduction
- 2. Multilateration Measurement method
- 3. Pre-alignment specific steps of HEPS Storage Ring
- 4. Pre-alignment efficiency and results
- 5. Summary

- The HEPS storage ring:
 - Circumference is about 1400 meters
 - Have 48 cells, 288 girder (98 MP, 98 FD, 98 DQ).
- In order to improve the installation efficiency and accuracy of the storage ring
 - -Each girder is pre-aligned in the laboratory
 - -Then transported to the storage ring to participate in the tunnel alignment.

• Based on simulation and physical design of the accelerator, the standard deviation for the pre-alignment adjustment of magnets on one girder with respect to each other in transverse and vertical must below 30µm.

• Through error analysis, the measurement accuracy of the pre-alignment is better than 10 μm . And the adjustment accuracy is better than 10 μm .

Final Accuracy /mm Stage Accuracy /mm		Fundamental accuracy /mm				
				Magnetic center of magnet leads to calibration accuracy	0.010	
				Measurement accuracy	0.010	
		Pre-alignment	0.020	Adjustment deviation	0.015	
			0.030	Magnet lock	0.010	
				Magnet open and close	0.010	
Total 0.047	0.047			Transport	0.015	
			Deformation in tunnel	0.010		
				Adjustment of displacement measurement accuracy	0.005	
		Tunnel alignment	0.036	adjustment deviation	0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.000 0.000 0.002 0.020 0.030	
				Relative control measurement accuracy	0.030	

- Due to the influence of angle measurement accuracy, the three-dimensional coordinate measurement accuracy of laser tracker reaches 15µm +6µm/m.
- The absolute distance measurement (ADM) accuracy of laser tracker is 10 µm over the full-scale range and the interferometer (IFM) measurement accuracy of laser tracker is 0.4µm +0.3µm/m.
- Thus, the multilateration method was introduced in order to reach high-precision measurements, prevent the influence of angle measurement error.

- 1. coordinate measurement accuracy:15µm +6µm/m
- 2. ADM: 10µm
- 3. IFM:0.4+0.3μm/m

Leica AT 960/930

multilateration method

- The measurement principle of the multilateration measurement method mainly includes two parts: Self-calibration and Front measurement.
 - **1. Self-calibration:** The system parameters, that is, the coordinates of the four stations, are solved by measuring enough points.
 - 2. Front intersection: Calculate the coordinates of the under-test point. After the system parameters are determined, four stations are used to measure the distance to the under-test point at the same time, and then the coordinate of the point can be calculated based on the distance.

The principle multilateration measurement method

Self-calibration:

we build a four-station laser trackers multilateration measurement system for magnet pre-alignment. Four stations were employed simultaneously to measure the distance to the target point. The error equation group can be expressed as:

 $D_{ij} + v_{ij} = \sqrt{(X_i - x_j)^2 + (Y_i - y_j)^2 + (Z_i - z_j)^2}$

The number of unknowns in error equation group is 3 (4+n), and the number of established equations is 4n. In order to

make the system have a solution, the number of equations needs to be greater than or equal to the unknowns:

The above equation can be solved by using the principle of rank deficient free network adjustment. nee

 $V^T P V = \min$

We can conclude that at least 4 instruments are needed to measure 8 common points simultaneously.

 $4n \ge 3(4+n)$

2. Multilateration Measurement method

- The measurement accuracy of the system mainly depends on two parts, the system arrangement and the ranging accuracy.
- For each determined instrument, its ranging accuracy is determined, so the system arrangement largely determines the final accuracy of the system.
- We simulated about forty different arrangements.
- Find a arrangement that meets measurement accuracy.

The simulated point accuracy_ of the magnet fiducial points

International Workshop on Accelerator Alignment 2024, SLAC, Oct 7-Oct 11, 2024

2. Multilateration Measurement method

- According to simulation result, we use four leicaAT930 laser tracker build multiliteration measurement system (FLTMMS) .
- According to the previous prealignment plan, we set up 3 workstations in the laboratory.
- Two people are required per workstation.

4 LeicaAT930

FLTMMS for pre-alignment of HEPS storage ring

-75°

• Reflection target

Leica Red Ring Reflection (RRR)

Acceptance angle of RRR is ±30°

Self-calibration measurement Super-Cat's Eye (SCE)

49

+75°

Vertical acceptance angle of SCE: Vertical ±75°, horizontal 360°.

Front intersection

SCE handle

The experimental validation: Absolute position measurement accuracy Relative displacement measurement accuracy

Absolute position measurement accuracy

Transverse X and Longitudinal Z directions are compared with Etalon Interferometer (EI) system. The direction of Vertical Y is compared to the 1m standard bar.

Etalon Interferometer (El)system: 0.5μm/m

1m standard bar: 1000mm±2µm

	T	1	2	2	4		A
	Times	1	2	3	4	5	Average value
I 1 (7 direction)	FLTMMS	4187.7559	4187.7537	4187.7548	4187.7596	4187.7618	4187.7572
L1 (Z direction)	EI			4187.7566			
	Deviation	-0.0007	-0.0029	-0.0018	0.0030	0.0052	0.0006
	Times	1	2	3	4	5	Average value
2 (V direction)	FLTMMS	558.9532	558.9522	558.9525	558.9511	558.9500	558.9518
L2 (A direction)	EI			558.9581			
	Deviation	-0.0049	-0.0059	-0.0057	-0.0071	-0.0082	-0.0063
Lengths and lengths deviation of FLTMMS and vertical standard bar /mm							
	Lengths an	d lengths devia	ation of FLTN	/MS and vert	cal standard b	ar /mm	
 	Lengths an	d lengths devia	ation of FLTN 3	AMS and verting 4	ical standard b	ar /mm 5 Ave	age value
Tin	Lengths an nes 1 1MS 999.9966	d lengths devia 2 999.9885	ation of FLTM 3 999.9906 9	AMS and verti 4 99.9931 99	cal standard b 5 9.9943 999.	ar /mm 5 Ave 9943 99	rage value 19.9929

 the deviations of the average value in the three directions are 6.3μm, 7.1μm, and 0.6μm, respectively.

2. Multilateration Measurement method

Relative displacement measurement accuracy

We compare the relative displacement measurement between FLTMMS and Attocube's IDS3005 Feedback Interferometer (FI: Feedback Interferometer)

IDS3005 measurement resolution: 1pm

Relative displacement deviation/µm					
	Х	Y	Z		
Start	0	0	0		
D01	-1.6	-0.3	0.8		
D02	-0.2	0	2.5		
D03	2.1	0.4	2.4		
D04	-1.9	-0.8	1.3		
D05	-1.1	-0.5	1.1		
D06	0.5	0.8	1.9		
D07	0.2	0.6	1.2		
D08	1.2	0.3	2.3		
MAX	2.1	0.8	2.5		
MIN	-1.9	-0.8	0.8		
STD	1.3	0.5	1.8		

International Workshop on Accelerator Alignment 2024, SLAC, Oct 7-Oct 11, 2024

- Measurement software development
- In order to apply Multilateration Measurement Method to the pre-alignment.
- Functions: instrument connection, Self-calibration, Front intersection, dynamic display coordinates, automatic aiming point, stable measurement and so on .

🗘 IleTaifaðalit Metron - (Ilt KMetron John Allandað 1963)	□ 2 ◎ 多站距离交会製量1.3	x
2933年6月(1919) 2019) 2013年1月 2014月17日) 2013年1月 2014年1月1日 1月11日 - 1月11日 - 1月111日 - 1	- # * · · · · · · · · · · · · · · · · · ·	☆会場畫做式
□ ● ■ 2 A A ● F A ● F A ■ ■ ● MALINA CARACTERS = X	测量坐示系 Default/测量坐标系 ~ 以置□相 Default	● 構力交合 0.1899.000ml 0.1899.000ml
Image: Section of the sectin of the section of the	Rome Life Sell (F) (((((((((((((((((((((((((((((((((• •
The stand of the second s		◆ ■ 8 ● 申 800 m □
I MATHA ANNA I MUTANA MANANATANA ITANATANA ANATANA ANATANA ITANA ITANA ITANA ANATANA ANATANA ANATANA ANATANA AN		

Main measurement interface

instrument connection

dynamic display coordinates

• There are three main steps in pre-alignment:

Girder fiducialization

- -Single AT930 laser tracker
- -Measure the corresponding position
- -Establish girder frame.

Girder top plane

Girder side

- Magnets alignment and locking
 - > Main magnet: Chose the magnet in the middle of girder, using single Leica AT930.
 - Quadrupole and octupole magnet : alignment relative to main magnet. Using mutilateration method. Adjust the magnet to theory position, then lock the magnet. Before locking, lose all the transverse and longitudinal adjust machine.

• Magnets alignment and locking

Sextupole magnet and mover alignment: There are three sextupole on each MP girder. There is a mover between sextupol and girder. Mover can automatic move for transverse and vertical direction. So we need alignment the mover first. Parallel to relative axis. Mover transverse can move from -20mm to +20mm, vertical can move from -1mm to +1mm, when mover move in this range the Z coordinate change within 10 micrometer.

- Magnets alignment and locking
 - > There is no Y-direction adjustment mechanism between the sixth-magnet and the mover, and the functions of the adjustment mechanism are adjusted horizontally and vertically.
 - > Use shims to place the height in the Y direction to the theoretical position.
 - > A lifting tooling is specially designed, lift the magnet and insert shims, lock.

Choose appropriate thickness shims

Lift the magnet and insert shims

Final measurement and replacement of the girder

- After all magnets are aligned, use the multilateration method to measure all magnets on the girder as the final pre-alignment result.
- Because the girder needs to be transported to the tunnel, in order to prevent the mover from moving during transportation, it is also necessary to use a fixing plate to fix the mover.
- ➢ Finally, use a forklift to replace the girder.

Install the fixing plate

replacing the girder

- Starts: October 1, 2022.
- Finish: November 31, 2023
- Total girder: 288

- Take measures to improve efficiency
 - Create a pre-alignment standard Excel table
 - Optimize and reduce the measurement steps
 - Improve the proficiency of magnet adjustment

- Three workstations were built to work in batches.
- We can align one cell (2 DQ girder, 2 FD girder and 2 MP girder) in five working days.

- Measurement in the laboratory, 288 girders
- Meet pre-alignment requirements

Deviation of 288 girders						
	Х	Y	Ζ			
MAX	0.027	0.023	0.028			
MIN	-0.024	-0.016	-0.027			
STD 0.010 0.010 0.014						

- Measurement after transport to the tunnel
 - -There are two girders with RMS in the X direction exceeding 30 μm
 - -31 μ m (R11FD2) and 32 μ m (R47FD1) respectively.

• There is a magnet inside these two girders that has translation in the X direction. Since pre-alignment in the tunnel is particularly difficult and translation is very small, we do not deal with these two girders.

Maximum RMS of 288 girders						
X Y Z						
RMS 0.032 0.019 0.048						

- ♦ The measurement method can achieve an absolute position measurement accuracy of 10µm, meeting the pre-alignment requirements;
- ♦The measurement method has a relative displacement measurement accuracy of 3µm, which meets the Mover adjustment requirements;
- ◆The pre-alignment process and the adjustment and locking method are reliable and effective, and can achieve highprecision and high-efficiency pre-alignment of the girder.

