Fermilab **ENERGY** Office of Science

Design of the PIP-II Tunnel Geodetic Control Network

David Krawczuk International Workshop on Accelerator Alignment 2024 (IWAA 2024) October 2024 (Updated November 2024)

Overview

Introduction

- Technical Requirements
- Network Design
- Network Results
- Network Verification
- Conclusion

Introduction

- Proton Improvement Plan II
- 215-meter long Linac will accelerate protons up to 800 MeV
- Beam will then transported through Beam Transfer Line (BTL)
- Beam will finally inject into Booster
- Main sections
 - Warm front-end (HBB)
 - SRF Linac
 - Beam Transfer Line (BTL)
 - Total length ~ 550 m

Overview

- Introduction
- <u>Technical Requirements</u>
- Network Design
- Network Results
- Network Verification
- Conclusion

General Tolerance Requirements

- <u>All values in this presentation are shown to 1σ confidence level</u>
- The Alignment Network shall provide a single-point absolute measurement accuracy of 0.50mm RMS relative to the FSCS-Z absolute frame
- The Alignment Network shall provide a relative measurement accuracy of 0.25mm RMS between points separated by <100m, relative to a local frame
- The Alignment Network shall support the combined alignment tolerances specified in the misalignment tolerances document

Component Tolerance Requirements

- The total RMS value of all the error components added quadratically shall not exceed the placement requirements
- Placement requirements were based on multiparticle simulations
- Based on the requirement that the beam can propagate through the <u>whole</u> <u>SRF Linac (~ 175 m)</u> with a high probability with specified errors <u>without</u> <u>orbit correction</u>
- For network verification, this requirement was extended for the entire beamline (~ 550 m) for thoroughness

Cold Component Tolerance Requirements

	Trans.	Vert.	Long.			
Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Cavities						
HWR Cavity	0.5	0.5	1	3	3	NR
SSR1 Cavity	0.5	0.5	1	3	3	NR
SSR2 Cavity	0.5	0.5	1	3	3	NR
LB650 Cavity	0.5	0.5	1	2	2	NR
HB650 Cavity	0.5	0.5	1	1	1	NR
Solenoids						
Solenoid HWR*	0.5	0.5	1	1	1	5
Solenoid SSR1*	0.5	0.5	1	1	1	5
Solenoid SSR2*	0.5	0.5	1	1	1	5
Cold Instrumentation	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Cold BPMs	0.5	0.5	1	F	F	5*

Warm Component Tolerance Requirements (1/2)

Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Front End						
Ion source	0.25	0.25	5	F	F	NR
LEBT Solenoid	0.25	0.25	5	F	F	40
LEBT Dipole Magnet	0.25	0.25	5	F	F	F
LEBT Chopper	0.25	0.25	5	F	F	NR
RFQ entrance/exit	0.125	0.125	2	F	F	1
MEBT Quad	0.25	0.25	0.5	F	F	4
MEBT Corrector	1	1	0.5	F	F	4
Bunching cavities	0.175	0.175	1	F	F	NR
200 Ohm Kicker	0.25	0.05	0.25	F	F	F
MEBT Absorber	1	0.125	1.5	0.25	2	5
Differential Pumping Insert	0.25	0.25	5	1	1	NR
SRF Linac						
RT Linac Quad	0.25	0.25	0.5	F	F	3
RT Steering Dipole	1	1	1	10*	F*	5
Straight Ahead Dump	1	1	5	5	5	NR

Warm Component Tolerance Requirements (2/2)

BTL						
RT BTL Quad	0.25	0.25	0.5	F	F	3
RT BTL Dipole	0.25	0.25	0.5	F	F	2
RT Steering Dipole	1	1	1	10*	F*	5
BTL Septum	0.25	0.25	0.5	F	F	3
BTL Switch Dipole	0.25	0.25	0.5	F	F	3
BTL Beam Absorber	1	1	5	5	5	NR
Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Faraday Cup	0.5	0.5	0.5	NR	NR	NR
Fast Faraday Cup	0.5	0.5	0.5	3	3	NR
LEBT Allison Scanner	1	1	1	5*	5*	5
MEBT Allison Scanner	1	1	1	1*	3*	5
RT BPM	0.25	0.25	0.5	F	F	5
Laser Wire	0.25	0.25	0.25	F	F	5
Wire scanner	0.5	0.5	0.5	F	F	5
Scraper	0.25	0.25	0.25	3	3	3
ACCT	0.5	0.5	0.5	NR	NR	NR
DCCT	0.5	0.5	0.5	NR	NR	NR
RWCM	0.5	0.5	0.5	NR	NR	NR
Longitudinal pickup	0.5	0.5	0.5	NR	NR	NR

‡ Fermilab

Overview

- Introduction
- Technical Requirements
- Network Design
- Network Results
- Network Verification
- Conclusion

Surface Network - Overall

Surface Network - Detail

Tunnel Network - Overall

Tunnel Network – Control Point Placement

Control Points and Instrument Specifications

• Kyjak Bolt

• Instrument Uncertainties

Instrument Type	Instrument Model	Uncertainties
Laser Tracker	Leica AT401/AT403	$\sigma_{Hz,V} = 1$ ", $\sigma_a = 0.008~mm$, $\sigma_b = 2.5~ppm$
Digital Level	Leica DNA03	$\sigma_a=0.050~mm$, $\sigma_b=2~ppm$
Total Station	Leica TS60	$\sigma_{Hz,V}=0.5$ ", $\sigma_a=0.600~mm$, $\sigma_b=1~ppm$

Pre-Analysis Details (1/2)

- 621 control points
- 52 laser tracker/Digital Level Setups
 - Trackers and levels collocated for convenience
 - Should approximate elevation measurements to a reasonable level
- 8 total station setups
- 1257 laser tracker/digital level observations
 - Slope Distance
 - Horizontal Direction
 - Vertical Angle
 - Rod Reading
- 56 total station observations
 - Slope Distance
 - Horizontal Direction
 - Vertical Angle

Pre-Analysis Details (2/2)

- Weighted Constraints
 - 5 sight-riser points
 - 31 points in the High Bay Building (HBB)
 - 24 Booster points
- Constrained Point Uncertainties
 - HBB and Booster uncertainties unavailable
 - Method 1: Surface Network Uncertainty + Transfer Uncertainty (2D)
 - Sight-Riser Surface Network Points (Single Component): 0.218 mm
 - Transfer Uncertainty (Wild NL, Single Component): 0.250 mm for 10-meter drop
 - Quadrature (Single Component): 0.332 mm
 - Method 2: 2006 Tevatron Network Adjustment Results (3D)
 - $\sigma_X = 0.325 \text{ mm}, \sigma_Y = 0.315 \text{ mm}, \sigma_Z = 0.315 \text{ mm}$
 - Decision: $\sigma_X = \sigma_Y = \sigma_Z = 0.325 \text{ mm}$

Overview

- Introduction
- Technical Requirements
- Network Design
- Network Results
- Network Verification
- Conclusion

Pre-Analysis Results (1/2)

- 3D uncertainties calculated using error propagation
- Custom Python program
- Results

Station Uncertainties	Hz (2D) / V (1D), mm
Mean Absolute	0.152 / 0.055
Max Absolute	0.210 / 0.069
Mean Relative (< 100 m)	0.105 / 0.030
Max Relative (< 100 m)	0.212 / 0.067

- Meets absolute accuracy requirements of 0.500 mm
- Meets relative accuracy requirements of 0.250 mm

Pre-Analysis Results (2/2)

Overview

- Introduction
- Technical Requirements
- Network Design
- Network Results
- Network Verification
- Conclusion

Network Verification

- Need to verify that the quadrature of <u>global</u> and <u>local</u> errors can meet alignment tolerance requirements
- Global errors
 - Network uncertainty
- Local errors (metrology)
 - Noise in metrology measurements
 - Stand adjustment errors

Global Errors – Network Uncertainty (1/2)

- Coordinate uncertainties needed to be turned into alignment uncertainties
 - Transverse, elevation, and longitudinal position
 - Pitch, roll, yaw orientation
- Calculated by dividing tunnel network into sections and using best-fit transformations
- 52 existing laser tracker setups were used to define tunnel sections
 - Used for convenience

Global Errors – Network Uncertainty (2/2)

- Used the following algorithm on all 52 laser tracker positions
 - 1. Identify all control points measured from instrument
 - 2. Create VCV submatrix of only the measured control points from full network VCV matrix
 - 3. Propagate measured control point errors through best-fit transformation
 - 4. Compute uncertainties in transformation parameters
- Results

Cold & Warm									
X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)				
0.201	0.057	0.168	0.008	0.009	0.004				
		Warm – Fr	ont End						
X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)				
0.078	0.048	0.056	0.001	0.004	0.001				

Local Errors

- Local error sources
 - Fiducial positions
 - Component electrical center positions
 - Mechanical feature positions (ex: flange centers, stud positions, etc.)
- Focused on fiducial positions only due to time constraints
- Should still provide a reasonable estimate for verification purposes

Local Errors

- Cold Component Analysis
 - 1. Individual component alignment on strongback
 - 2. Component string & strongback insertion into vacuum vessel
 - 3. Vacuum vessel placement inside tunnel
- Warm Component Analysis
 - Direct placement of component in tunnel only
- Picked a basic model due to time constraints
 - Dimensions chosen to best represent all components

Model

Component Alignment to Strongback

Component String/Strongback Insertion to Vacuum Vessel

Placement of Vacuum Vessel Inside Tunnel

Local Errors – Measurement Noise

- Laser tracker measurement uncertainty
 - Used instrument uncertainty analysis function in SpatialAnalyzer
 - Computed uncertainties on component/strongback/vessel fiducials
- Best-fit transformation uncertainties for cold components
 - Error stack-up from repeated best-fits
 - Component string/strongback insertion to vacuum vessel
 - Placement of vacuum vessel inside tunnel
 - Used custom Python best-fit transformation error propagation program
 - Input: fiducial uncertainties
 - Output: final component alignment uncertainties inside tunnel

Local Errors – Measurement Noise Results

Cold components

X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
0.006	0.007	0.005	0.009	0.009	0.008

- Warm component uncertainties would be even less significant
 - Assumed to be same as cold components for convenience

Local Errors – Stand Adjustment Error

- Adjustment stands keep components in place
- Component position adjusted by finely threaded bolts or studs on stands
- Mechanical limitations on adjustability
- Practical limit for each fiducial: ± 0.100 mm
 - Based on previous experience
- Estimated alignment uncertainties using Monte Carlo simulations

Local Errors – Stand Adjustment Error – Monte Carlo

- Custom Python program
- Algorithm
 - 1. Generate shift errors and orientation errors using uniform distribution
 - 2. Check if all fiducials are < 0.100 mm
 - 3. If so, move on to next step
 - 1. Individual component alignment on strongback
 - 2. Component string & strongback insertion into vacuum vessel
 - 3. Vacuum vessel placement inside tunnel

Local Errors – Stand Adjustment Error Results

Cold components

X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
0.103	0.080	0.085	0.138	0.141	0.145

• Warm components

X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
0.050	0.055	0.042	0.133	0.148	0.117

Network Verification Results (Quadrature Calculation)

Cold	X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Global - Network	0.201	0.057	0.168	0.008	0.009	0.004
Local - Noise	0.006	0.007	0.005	0.009	0.009	0.008
Local - Stand	0.103	0.080	0.085	0.138	0.141	0.145
<u>Total</u>	<u>0.226</u>	<u>0.098</u>	<u>0.188</u>	<u>0.139</u>	<u>0.142</u>	<u>0.145</u>

Warm	X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Global - Network	0.201	0.057	0.168	0.008	0.009	0.004
Local - Noise	0.006	0.007	0.005	0.009	0.009	0.008
Local - Stand	0.050	0.055	0.042	0.133	0.148	0.117
<u>Total</u>	<u>0.207</u>	<u>0.080</u>	<u>0.173</u>	<u>0.134</u>	<u>0.149</u>	<u>0.117</u>

Warm – Front End	X (trans., mm)	Y (vert., mm)	Z (long., mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Global - Network	0.078	0.048	0.056	0.001	0.004	0.001
Local - Noise	0.006	0.007	0.005	0.009	0.009	0.008
Local - Stand	0.050	0.055	0.042	0.133	0.148	0.117
<u>Total</u>	<u>0.093</u>	<u>0.073</u>	<u>0.070</u>	<u>0.133</u>	<u>0.148</u>	<u>0.117</u>

Network Verification Results

- All alignment tolerances are expected to be met except for one warm component
 - 0.073 mm > 0.050 mm

	Trans.	Vert.	Long.			
Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)
Front End						
200 Ohm Kicker	0.25	0.05 <mark>X</mark>	0.25	F	F	F

- Can be accounted for by beam-based alignment
- Differential corrections can be applied using precise methods
 - Micrometer < 0.050 mm
 - Interferometer < 0.050 mm

Overview

- Introduction
- Technical Requirements
- Network Design
- Network Results
- Network Verification
- <u>Conclusion</u>

Conclusion

- Absolute and relative network tolerances are expected to be met
- All alignment tolerances are expected to be met except for one warm component
 - Can be accounted for by beam-based alignment

Acknowledgements

- I would like to sincerely thank the following people for assisting me in this project
- Technical Review
 - Dr. Virgil Bocean
 - John Kyle
 - Georg Gassner (SLAC)
- Technical Feedback
 - Charles Wilson
 - Curtis Baffes
- Surface Network Pre-Analysis Data
 - John Kyle
 - Jana Barker (now DESY)

Thank you!

