Fermilab

Geodetic and Alignment Aspects for Proton Improvement Plan-II at Fermilab

Dr. Virgil Bocean Alignment & Metrology Department Fermilab

Proton Improvement Plan-II (PIP-II) Goals

- Proton Improvement Plan-II (PIP-II) is Fermilab's plan for upgrading the accelerator complex
- PIP-II goal is to support long-term physics research objectives as outlined in the P5 plan, by delivering world-leading beam power to the U.S. neutrino program and providing a platform for the future:
 - ✓ Deliver >1 MW of proton beam power from the Main Injector over the energy range 60 120 GeV, at the start of LBNF operations
 - Support the ongoing 8 GeV program including Mu2e, g-2, and short-baseline neutrinos
 - ✓ Provide an upgrade path for Mu2e
 - ✓ Provide a platform for extension of beam power to LBNF to >2 MW
 - Provide a platform for extension of capability to high duty factor/higher beam power operations
- Proposed schedule : Start operations in newly-configured complex in 2029

PIP-II Technical Approach

- Construct a modern 800-MeV superconducting linac, of continuous waveform CW-capable components, operated initially in pulsed mode
 - Increase Booster/Recycler/Main Injector per pulse intensity by ~50%
- Increase Booster repetition rate to 20 Hz
 - Maintain 1 MW down to 60 GeV or,
 - Provide factor of 2.5 increase in power to 8 GeV program
- Modest modifications to Booster/Recycler/Main Injector
 - Accommodate higher intensities and higher Booster injection energy
- This approach as described in the Reference Design Report:
 - ✓ Builds on significant existing infrastructure
 - ✓ Capitalizes on major investment in superconducting RF technologies
 - Fermilab is one of the leading SRF laboratories in the world
 - Existing linac removed from service upon completion of PIP-II
 - ✓ Siting is consistent with eventual replacement of the Booster as the source of protons for injection into Main Injector (PIP-III)

PIP-II Site Context

 Fermilab's accelerator complex supports a diverse program:

> Neutrinos

- NuMI
- BNB
- LBNF

Muons

- g-2
- Mu2e
- Test Beams
- Fixed Target

PIP-II Performance Goals

Performance Parameter	PIP-II	
Linac Beam Energy	800	MeV
Linac Beam Current	2	mA
Linac Beam Pulse Length	0.54	msec
Linac Pulse Repetition Rate	20	Hz
Linac Beam Power to Booster	17	kW
Linac Beam Power Capability (@>10% Duty Factor)	~200	kW
Mu2e Upgrade Potential (800 MeV)	>100	kW
Booster Protons per Pulse	6.5×10 ¹²	
Booster Pulse Repetition Rate	20	Hz
Booster Beam Power @ 8 GeV	166	kW
Beam Power to 8 GeV Program (max)	83	kW
Main Injector Protons per Pulse	7.5×10 ¹³	
Main Injector Cycle Time @ 60-120 GeV	0.7-1.2	sec
LBNF Beam Power @ 60-120 GeV	1.0-1.2	MW
LBNF Upgrade Potential @ 60-120 GeV	>2	MW

PIP-II Site Layout

PIP-II connection to Booster and Muon Campus

PIP-II 800 MeV Linac

- The 800 MeV linac will be located in an underground 210 m long tunnel
- It will use superconducting RF accelerating cavities at three different frequencies
- Beam focusing is provided by quadrupoles and solenoids
- A 300 m long transfer line connects to the Booster

• The PIP-II superconducting section will occupy ~150 m of the linac enclosure with:

- 1 CM (8 cavities) HWR @ 162.5 MHz => at ANL
 - Cryomodule built in FY17 and used in PIP2IT
- 9 CM (51 cavities) SSR1 & SSR2 @ 325 MHz => at Fermilab
 - One SSR1 Cryomodule built in FY17 and used in PIP2IT

Half-Wave Resonator (HWR) Cryomodule

Single Spoke Resonator (SSR) 1-2 Cryomodules

- The PIP-II superconducting section will occupy ~150 m of the linac enclosure with:
 - 15 CM (57 cavities) LB & HB @ 650 MHz
 - The prototype HB650 cryomodule was built in 2022 and tested at PIP2IT test stand

- PIP2IT was installed and run at the CM Test Facility (CMTF) building
- demonstrated the front end of the PIP-II linac by accelerating H- ions up to
 - 25 MeV in about 40 m length
 - ✓ H- ion source: 30 kV, 10 mA
 - ✓ LEBT pre-chopping
 - ✓ RFQ 2.1 MeV, CW mode
 - ✓ MEBT bunch-by-bunch chopper with beam absorber, vacuum management
 - ✓ Operation of HWR in close proximity to 10 kW absorber
 - Operation of SSR1 with beam CW and pulsed, resonance control and LFD compensation in pulse mode

Collaborators ANL: HWR LBNL:LEBT, RFQ SNS: LEBT BARC: MEBT IUAC: SSR1

PIP-II R&D: PIP-II Injector Test

Low Energy Beam Transport (LEBT)Ratio frequency Quadrupole (RFQ)Medium Energy Beam Transport (MEBT)Image: Construction of the state of

• LEBT, RFQ , MEBT and HEBT beamline components aligned < \pm 0.25 mm

- PIP2IT completed various phases of installation and running test beam for physics
- Successful conclusion of the PIP2IT commissioning in 2021 with beam at the designed energy through the cryomodules

• Warm Components Tolerance Requirements

Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)			
Front End									
Ion source	0.25	0.25	5	F	F	NR			
LEBT Solenoid	0.25	0.25	5	F	F	40			
LEBT Dipole Magnet	0.25	0.25	5	F	F	F			
LEBT Chopper	0.25	0.25	5	F	F	NR			
RFQ entrance/exit	0.125	0.125	2	F	F	1			
MEBT Quad	0.25	0.25	0.5	F	F	4			
MEBT Corrector	1	1	0.5	F	F	4			
Bunching cavities	0.175	0.175	1	F	F	NR			
200 Ohm Kicker	0.25	0.05	0.25	F	F	F			
MEBT Absorber	1	0.125	1.5	0.25	2	5			
Differential Pumping Insert	0.25	0.25	5	1	1	NR			
SRF Linac									
RT Linac Quad	0.25	0.25	0.5	F	F	3			
RT Steering Dipole	1	1	1	10*	F*	5			
Straight Ahead Dump	1	1	5	5	5	NR			

• Cold Components Tolerance Requirements

Beam Line Element	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)	
Cavities							
HWR Cavity	0.5	0.5	1	3	3	NR	
SSR1 Cavity	0.5	0.5	1	3	3	NR	
SSR2 Cavity	0.5	0.5	1	3	3	NR	
LB650 Cavity	0.5	<mark>0.5</mark>	1	2	2	NR	
HB650 Cavity	<mark>0.</mark> 5	0.5	1	1	1	NR	
Solenoids							
Solenoid HWR*	0.5	0.5	1	1	1	5	
Solenoid SSR1*	0.5	0.5	1	1	1	5	
Solenoid SSR2*	0.5	0.5	1	1	1	5	
Cold Instrumentation	X-Offset (mm)	Y-Offset (mm)	Z-Offset (mm)	Pitch (mrad)	Yaw (mrad)	Roll (mrad)	
Cold BPMs	0.5	0.5	1	F	F	5*	

Primary Surface Geodetic Network

•PIP-II surface network will have similar density and configuration as NuMI

- Provides the basis for construction surveys and for the precision underground control networks
- Existing Fermilab control network (accuracy < 2 mm @ 95% confidence level)
 - horizontal geodetic datum = North American
 Datum of 1983 (NAD 83) based on the reference
 ellipsoid Geodetic Reference System 1980 (GRS-80)
 - vertical datum = North American Vertical Datum of 1988 (NAVD 88)
 - o geoid model = NGS model Geoid12B
- Includes 4 monuments tied to CORS and IL HARN

PIP-II Surface Geodetic Network

- Add 11 new geodetic monuments (densification around project site)
- ~400 GPS and terrestrial observations
- expected error ellipses average ± 0.5 mm @ 95% confidence level

Precision underground control networks

- Provide vertical sight risers for transferring coordinates from the surface to the underground (better and more efficient for controlling error propagation in a weak geometry tunnel network)
- Network simulations => 5 locations for transferring coordinates from the surface
- Designed adequate procedure for precision transfer of surface coordinates underground

Precision underground control network for Linac and Transfer Line

- Established to support the precision alignment of beamline components
- Components alignment wrt Linac and are very similar to MI and NuMI:
 - cryomodules, beam magnets and instrumentation aligned to ± 0.25 mm
- Components alignment wrt CM and are similar to LCLS-II:
 - cavities and solenoids aligned to ± 0.5 mm and 1- 0.5 mrad angular
- Error budget network requirements ± 0.50 mm at 95% confidence level
- Network: continuous from Linac and Transfer Line to Booster
- Constraints at underground transfer points: 5 sight risers
- Network type: Laser Tracker and Precision Digital Level
- Additional Total Station angular and distance measurements to study and control network behaviour
- Beam trajectory Azimuth confirmed by precision Gyro ± 3 arcsec (0.015 mrad) between transfer points

Precision underground control network Expected accuracy results

• Linac and Transfer Line Errors Ellipses: max ± 0.5 mm @ 95% confidence level

Cryomodules alignment

- Components alignment wrt CM and are similar to LCLS-II:
 - Cavities and solenoids aligned to ± 0.5 mm transversal and 1-0.5 mrad angular
- The beam is mainly sensitive to the solenoids angle error: ± 0.5 mrad => ± 0.15 mm pitch/yaw (1 σ)
- Cryomodule error budget analysis (among others) $< \pm 0.5$ mm
 - referencing of cavities/solenoids mechanical and magnetic axis < ±0.10 mm</p>
 - \succ cavity string alignment = ± 0.15 mm
 - \succ cold mas to vessel alignment and referencing to vessel = \pm 0.2 mm
 - > string misalignments due to transportation = ± 0.2 mm
 - \blacktriangleright thermal cycling (warm up, cool down) = ± 0.05 mm
- The FNAL cryomodules alignment procedure is well established and proven to achieve similar accuracy requirements as LCLS-II, well within PIP-II requirements
- Referenced and aligned 2 cryomodules for PIP2IT: the Half-Wave Resonator (HWR) and one SSR1

PIP-II current status

- Partners:
 - International: collaborations are formalized with institutions from India, France, Italy, United Kingdom and Poland
 - National: ANL, LBNL, SLAC most active
- PIP-II current status:
 - Critical Decision 3a (CD-3a) the final PIP-II project design has been completed and approval to start construction was given February 2021. Currently, the project is in construction phase.

Future Directions: PIP-III

- The configuration and siting of the PIP-II linac are chosen to provide opportunities for future performance enhancements to the Fermilab proton complex
 - upgrading the PIP-II linac to CW operations and replacement of the Booster with higher performance accelerator (PIP-III)
 - PIP-III (booster replacement allows multi-MW beams) an essential part of the upgrade to 2.4 MW

Summary

- PIP-II will allow Fermilab to maintain it's lead with the most powerful neutrino beam in the world, with >1 MW at startup
- Presents a challenge with respect to the detail and complexity of the geodetic and alignment aspects
- From the Alignment perspective the PIP-II is very similar with MI, NuMI, LCLS-II
- Past experience:
 - The absolute global tolerances have been achieved successfully
 - The relative alignment tolerances of beamline components have been also achieved successfully
- Similar geodetic and alignment concepts are proposed and used for PIP-II

Thank you

