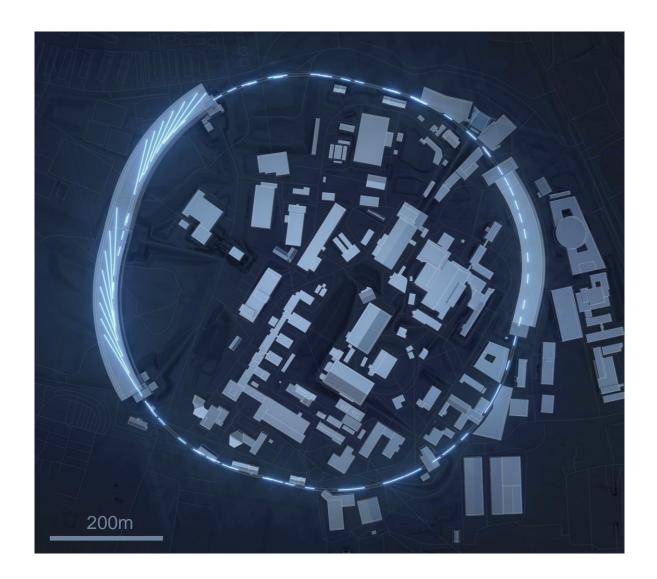
PETRAIV. NEW DIMENSIONS

PETRA IV Alignmentoversew WAA 2024 - SLAC

Jana Barker (MEA2) Menlo Park, 8th October 2024

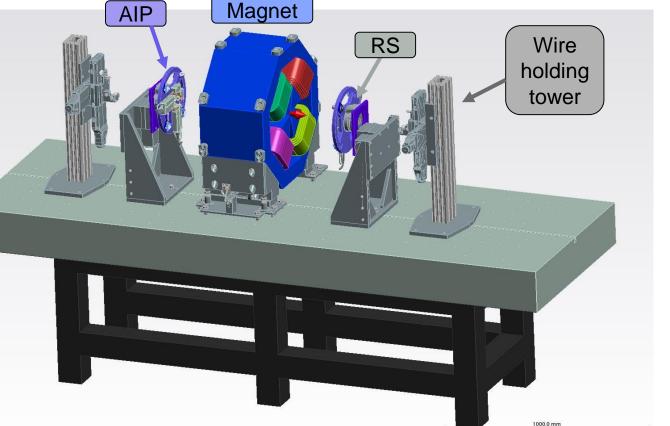

HELMHOLTZ

PETRAIV.

Introduction

Petra IV

- TDR ended at the start of 2024 \rightarrow Prototyping phase
- Uses mostly existing tunnels, new experimental hall
- Over 3000 magnets to fiducialize (2659 resistive)
- $\sigma_{Magnet2Magnet} = 30 \ \mu m, \ \sigma_{Girder2Girder} = 100 \ \mu m$
 - Definition: maximum size of the semi-major axis of the error ellipsoid at ~p=0.68 (1σ)
- Fiducialization with
 - Laser Tracker
 - Photogrammetric
- Instrument pillar design
- Automatization and software

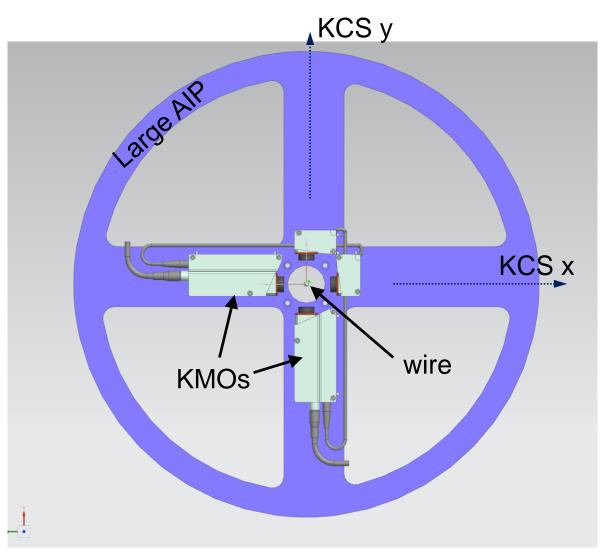


DESY. | Jana Barker | PETRA IV Alignment Overview | IWAA 2024, SLAC

Fiducialization

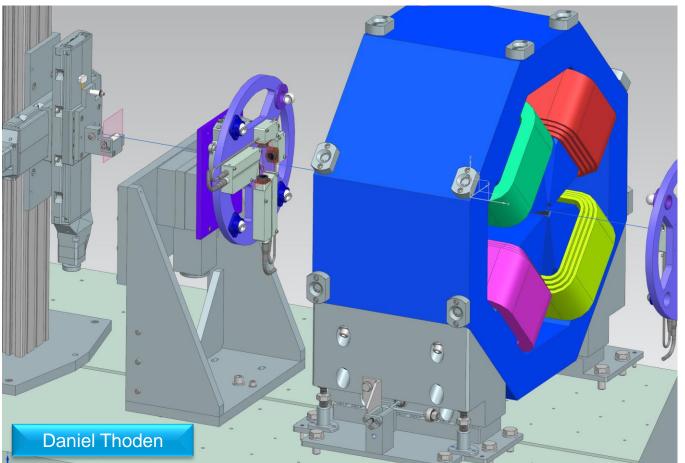
Resistive Magnet Measuring Bench

- Two main goals during development:
 - Uncertainty $\leq 15 \, \mu m$
 - Automatization
- Bench components:
 - 2 wire holding towers with perpendicular linear stages
 - 2 stands each holding a rotational stage (RS) with alignment interface plate (AIP) axially traversed by the stretch wire
 - Maybe: linear stages between AIP and RS?
- No magnetic or magnetizable materials usable


Resistive Magnet Measuring Bench

Fiducialization

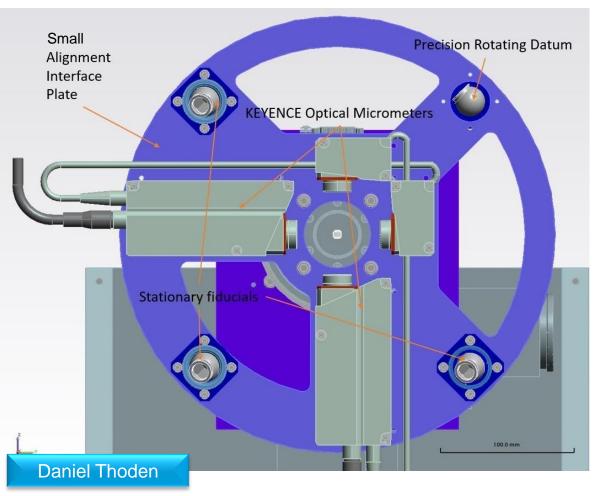
Alignment Interface Plate



- AIP holds two (roughly) perpendicular Keyence laser optical micrometers (KOMs)
- Each KOM measure one coordinate axis
 - creating a roughly perpendicular CS: "KCS"
- KOMs measure the wire position as the stage rotation
- KCS are referenced to the AIP fiducials during stand calibration
- The relationship of KOMs to AIP fiducials is characterized by a non-changing angle

Fiducialization

Measurements of the Magnetic Axis

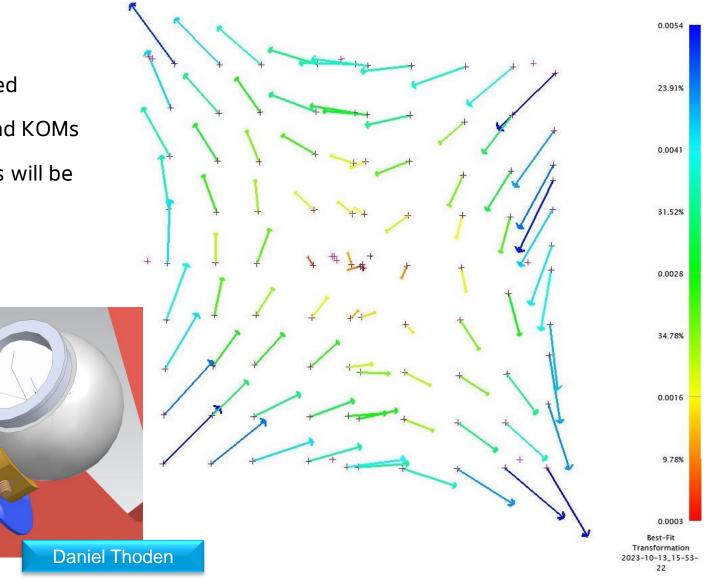

- Initial AIP position measured using all fiducials
- AIP rotates; KOMs measure the wire position, fiducial(s) are measured by a method of choice
- Centre of rotation and the centre of the circle created by the measurements of the are coincident
- Magnet coordinate system is then determined:
 - X: the line between two wire positions
 - Z: a Roll angle vector in KCS (not certain yet)
 - Y: complementary to create Cartesian CS
 - Origin by measurements of pole tips

Fiducialization – Laser Tracker

Measurements

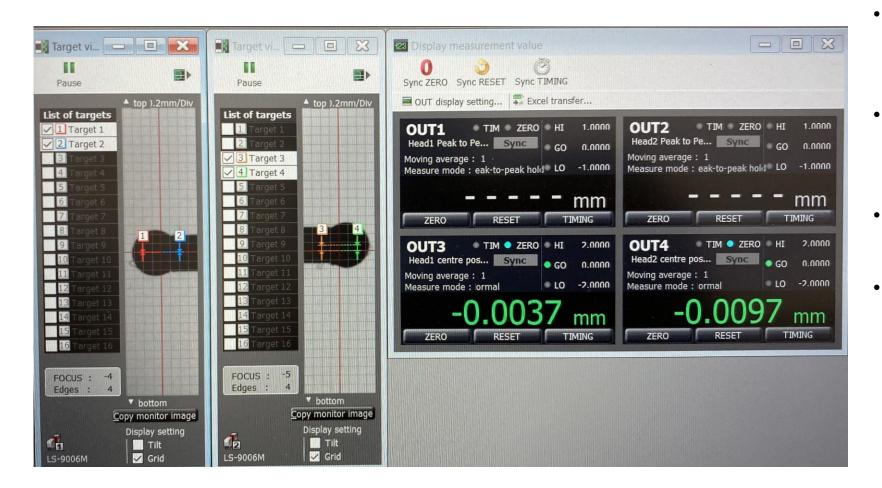
- AIP for laser tracker has the precision rotating datum (PRD)
- PRD is weight with a pendulum, assuring a consistent pointing to the laser tracker for automation; no manually rotating SMRs
- Stationary fiducials are 3 point of contact nests with a securing ring
- PRD enables non-experts to perform referencing with automation
- 72 points = every 5° in order to achieve ≤ 1 µm using uncertainties from previous experience with AT960:

Quantity	Uncertainty
Horizontal angle	0.11 mgon
Zenith angle	0.42 mgon
Slope distance	4 µm + 1 ppm



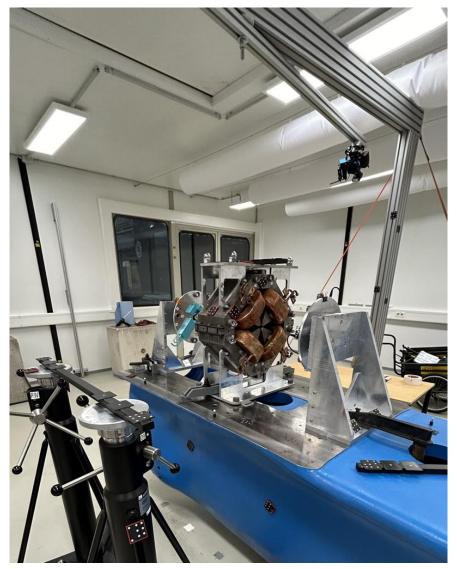
Fiducialization – Laser Tracker

Calibration Procedure


- The whole stand assembly is measured all imperfections can be mathematically corrected
- The same points will be measured by CMM and KOMs
- An affine transformation matrix's parameters will be found using LSM
- KOMs measurements will be orthogonalized
- PRD will be gently locked in place during the calibration (for each position) and measured with the CMM probe if the precision of the rotation will not be accurate enough

Fiducialization – Laser Tracker

Calibration Procedure – Proof of Concept



- Proof of concept for calibration procedure has been successfully performed
- Measurements have to be done to the shaft of the tactile probe as the KOMs have better results
- Changing the color of the shaft did not change the accuracy
- Calibration must be streamlined compared to the PoC

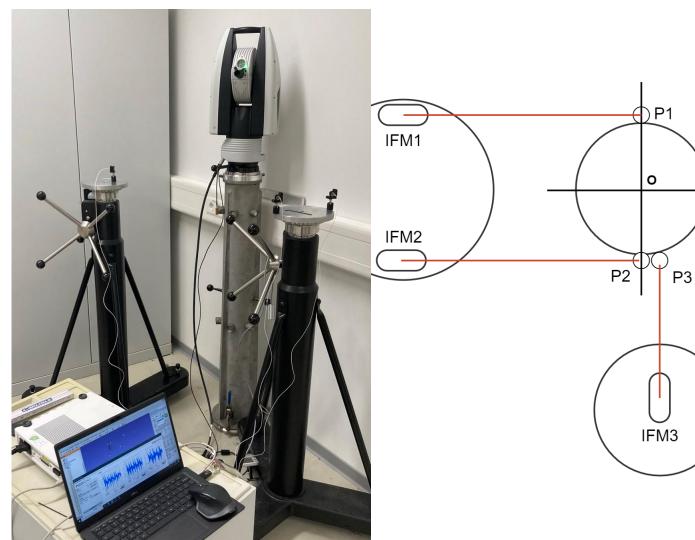
Fiducialization – Photogrammetry

Proof of Concept

- Imaging AIP from a circular path above the measurement bench
- A large frame with the camera mounted on a rotating beam spanning over the magnet
- Camera height above magnet is ~1.5m
- Calibration method depends on the fiducials of choice
- Performed with GSI's Nikon 700D (50 µm version)
- PoC succesful, in all results reached the accuracy of the camera

Fiducialization - Photogrammetry

The Measurements and Proof of Concept Results


- After initial measurements, larger plates were manufactured
- During first measurements we experimented with fiducial positions
- 2 more sets were measured using the larger plates

Description	$\begin{array}{c} \mathbf{Max} \ \sigma_{\mathbf{XYZ}} \\ \mathbf{AIP} \end{array}$	Max σ_{XYZ} Magnet Fiducial
Small AIP, frame cam	23 µm	10 µm
Large AIP, hand cam	41 µm	20 µm
Large AIP, frame cam	58 µm	16 µm

Pass 1 - camera in hand		
CoR Data Source	Median of differences	
Laser tracker	4 µm	
Photogrammetry	6 µm	
LT and Photogrammetry	21 µm	
Pass 2 - camera on frame		
CoR Data Source	Median of differences	
Laser tracker	3 µm	
Photogrammetry	47 µm	
LT and Photogrammetry	26 µm	

HERA Pillar Measurements

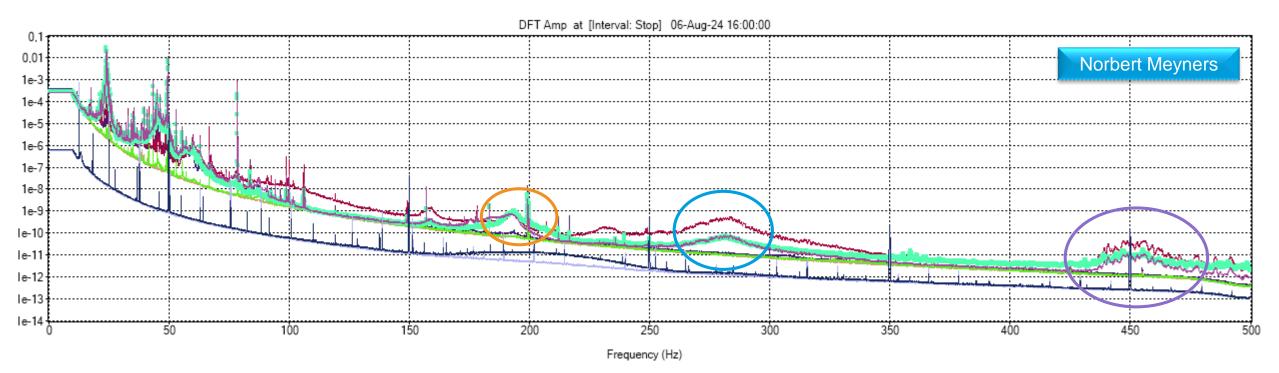
- Lightweight HERA pillar made for gently handled theodolites
- Now with weighty, rapidly moving LT.
- Pillar measured by set of 3 IFMs while excited by an LT automeasuring network
- Mathematical corrections were done to create planar perpendicular CS to easily represent the vibrations
- The pillar produced audible vibrations at (400 ± 25) Hz with the LT
- Measurements showed large elastic deformations of 10 µm (in X) respective 5 µm (in Y)
- This pillar doesn't fulfil requirements for stable instrument stand

Concrete Block Measurements

1 ton concrete block pillar

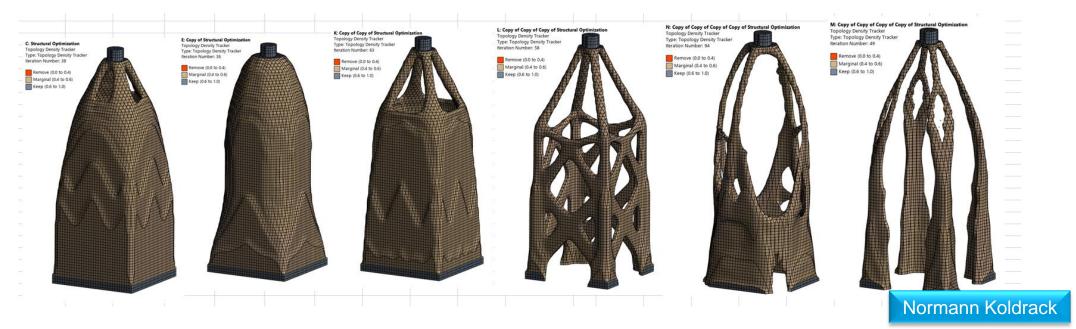
opposite of the slender HERA pillar

- Measured vibration spectrum with seismometers, accelerometers, and interferometers
- 4 hours duration


 same time as magnet
 referencing or girder
 alignment

Concrete Block Results

- In the region of 0-100 Hz, there are typical DESY vibrations, only slightly amplified at the top of the pillar
- A sharp peak at ~200 Hz
- With slow peaks at 195 Hz, 270 Hz and 450 Hz where the ground is still, only the top of the pillar is excited


Prototype design

- Requirements derived from previous tests were:
 - Deformations $\leq 1 \ \mu m$
 - Lowest eigenfrequency above 100 Hz
 - Avoid laser tracker driving frequencies

Prototype design

- Requirements derived from previous tests were:
 - Deformations $\leq 1 \, \mu m$
 - Lowest eigenfrequency above 100 Hz
 - Avoid laser tracker driving frequencies
- Prototypes were created by FEM analysis to fulfil the criteria

Prototype design

- Requirements derived from previous tests were:
 - Deformations $\leq 1 \, \mu m$
 - Lowest eigenfrequency above 100 Hz
 - Avoid laser tracker driving frequencies
- Prototypes were created by FEM analysis to fulfil the criteria
- Some prototypes will be manufactured and further tested

B: Modal Total Deformation 6 Type: Total Deformation

Frequency: 379,88 Hz Unit: mm 02.10.2024 14:50 **7,5303 Max**

> 6,6936 5,8569 5,0202 4,1835 3,3468 2,5101

1,6734 0,8367 0 Min

PETRAIV. NEW DIMENSIONS

THANK YOU FOR YOUR AMEENTION

PETRA IV Alignment Overview

And thanks to my colleagues:

Markus Schlösser, Sebastian Albrecht, Johannes Prenting, Martin Noak, Yvonne Imbschweiler, and Petra Radomi (MEA2 - Department of Applied Geodesy); Normann Koldrack, Daniel Thoden, Norbert Meyners, and Matthew Laws (MEA1); Philipp Altmann and his group (MEA4); Uwe Eggerts and his group (MEA5); Florian Andresen (ZMQS) and Anthony Barker (MSK).

HELMHOLTZ

What to Remember – Ultimate Summary

Software Tools Development Fiducialization – two methods **Instrument Pillar Design** Development of: LT - easier to automate Laser Tracker has specific ٠ ٠ driving frequencies Potential issues with PRD (LT) Measurements analysis tools ٠ and geometry (PG) A variety of designed pillars • Automation tools • will be manufactured and Can be found at ٠ Further developed in parallel to tested https://github.com/Jadracka/ mitigate risks The designed pillars avoid the • troubling frequencies

Contact

•

•

•

DESY. Deutsches	Jana Barker
Elektronen-Synchrotron	Petra IV Project Geodetic Engineer
	MEA2 – Applied Geodesy Department
www.desy.de	<u>jana.barker@desy.de</u> , piv-alignment@desy.de
	+49 40 8998 2325