Dark Matter Search and Neutrino Physics at the PandaX Experiment

Qiuhong Wang Fudan University On behalf of the PandaX Collaboration

Aug 13, 2024, SLAC

wangqiuhong@fudan.edu.cn

Outline

Introduction

- Dark matter search in PandaX-II & PandaX-4T
 - Data analysis techniques
 - WIMP search results
- Neutrino physics in Pandax-4T
 - Extend detector response to O(MeV)
 - ¹³⁶Xe $2\nu\beta\beta/0\nu\beta\beta$ search
 - ¹²⁴Xe 2vECEC search
 - Solar neutrino flux measurement

• Summary

Dark matter and its evidence

Galactic rotation curve

Bullet Cluster

 Gravitational evidences suggest dark matter really exists and is the dominant form of matter in Universe!

Cosmic Microwave Background

 The nature of dark matter is still a mystery: fundamental particle?

Dark matter candidates

- Weakly Interacting Massive Particle (WIMP)
- mass ~ 100 GeV, "WIMP miracle"
- WIMP is one of the most promising dark matter candidates!

Dark matter detection

Indirect detection

DM: low hanging fruit?

The big three xenon DM experiments

Neutrinos are Dirac or Majorana?

• Majorana neutrino may be an important link in connecting to matterantimatter asymmetry in our universe.

$0\nu\beta\beta$ probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation

Leading $0\nu\beta\beta$ experiments

LEGEND family

HPGe

CUORE/CUPID

Bolometer

Dual-phase xenon time projection chamber (TPC)

- S1: prompt scintillation signal
- S2: delayed ionization signal

 Dark matter: nuclear recoil (NR)
 γ background: electron recoil (ER)

 S1 __Drift time, S2
 S1 __Drift time, S2

(S2/S1)_{NR}<<(S2/S1)_{ER}

Dual phase xenon detector capability:

- ER/NR identification
- Single / multi-site identification
- 3D reconstruction and fiducialization
- Calorimeter from sub keV to MeV

Gamma

PandaX collaboration

- Particle and Astrophysical Xenon Experiment
- Now 15 institutions, ~80 authors

China Jinping underground Laboratory (CJPL)

- Deepest underground lab
 - 6800 m.w.e
 - < 0.2 muons/m²/day
- Much larger space in CJPL-II
- National key science research facility for dark matter searches, neutrino physics, and astroparticle physics, etc.

PandaX experiments

• Increasing the detector sensitive target volume

PandaX-I

120kg

2010-2014

• Lowering radioactive background

2009

SLAC seminar, Aug 2024

PandaX start

E PANDAX

PandaX DM+nu Program - Qiuhong Wang, FDU

Ph.D. work: WIMP search with PandaX-II

- PandaX-II: started the commissioning run in Nov. 2015, shut down in Jun. 2019
- Spent ~3 months per year on duty at CJPL
- Gained extensive experience in experimental particle physics and astrophysics, including detector simulation, experimental setup, commissioning and debugging, laboratory management, operation and maintenance on infrastructures and various subsystems

PandaX-II data sets

- 2019.06 "End-of-Run" completed
- Total exposure: 131.7 ton-day
 - Run 9: 79.6 days
 - Run 10: 77.1 days
 - Run 11, span 1: 96.4 days
 - Run 11, span 2: 147.9 days

- WIMP search with commissioning, 1st, 2nd physics runs, and full exposure of PandaX-II
- Refined algorithms: (1) detector response model, (2) improved background evaluation

Response Model

- Calibration data
 - ER events: tritium and ²²⁰Rn
 - NR events: AmBe
- NEST 2.0 based response model
 - with data quality cut efficiency

ER Run 9 ER Run 10/11 NR Run 9 NR Run 10/11

Background estimation and unblinding data

- Refined algorithms
 - New detector response model
 - Improved background evaluation
- Blind analysis for Run 11
- Total 1220 events, 38 below NR median
 - Consistent with background expectation (with best fit)
 - Best fit: 1217 \pm 60 evts
 - Below NR median: 40.3 ± 3.1 evts

Source	Evaluation	
¹²⁷ Xe	35.5 day lifetime, decay away in Run 11	
³ Н	Introduced after Run 9, fitted from data, see later	
²¹⁴ Pb	Depletion effect from measurement	
⁸⁵ Kr	Not a constant due to air leakage in Run 11	
neutrons	Data-driven estimation	
surface events	Data-driven extrapolation	
accidental events	Newly trained BDT discriminator	

²¹⁴Pb background

- Major ER contribution from ²¹⁴Pb
 - Charged Rn progenies attracted to the cathode with negative HV
 - Less contribution in fiducial volume: "depletion effect"
- New method to evaluate ER event rate from ²¹⁴Pb
 - The depletion ratio measured from ²²²Rn calibration (end-of-run)
 - Interpolation from ²¹⁸Po and ²¹⁴Bi
- PandaX-II ²¹⁴Pb level: 10µBq/kg

[Bq]

Activity

Traditional calculation for neutron background

01

Material Radioactivity (²³⁸U/²³⁵U/²³²Th)

knowledge of the radioactivities of detector materials

2 Neutron Generator (SOURCES4A)

> a model convert material radioactivity to the number of neutrons and their energy spectrum

Detector Simulation (Geant4)

03

describe detailed neutron interactions in the xenon target and calculate the final DM-like background

- Measurement of material radioactivity has large uncertainty
- Fully rely on the Monte Carlo simulation

Improved estimation on neutron background

- Constrain low energy neutron background via neutron-induced high energy gamma (HEG) signals
- Scale factor (neutron bkg / HEGs ≈ 1 : 20) predicted by MC, benchmarked by neutron source calibration (see next page)
- More reliable estimation of neutron background with a well-controlled uncertainty of 30%-50%

SLAC seminar, Aug 2024

Benchmarked by neutron calibration

- Compare data and MC with AmBe calibration
 - ER spectra at high energy
 - SSNR/HEG ratio

AmBe Run		MC		
Ambe Run	# SSNR	# HEG	Ratio	Ratio
Run 9	3415	49159	1/14.4	1/14.7
Run 10	10390	151783	1/14.6	1/15.2

 Difference between data and MC indicates systematic uncertainty.

Event distributions

- Distribution of events with high WIMP hypothesis likelihood (400 GeV)
 - 3 events in Run 9 and 7 events in Run 11

WIMP search results of PandaX-II

- Spin-independent Interaction
- Exclusion limits on SI
 - for 30 GeV, 2.2x10⁻⁴⁶ cm², 1.7 WIMPs
- 54 ton-day exposure data, with downward fluctuation, generated a best constraint on WIMP model in 2017
- The long duration of the PandaX-II operation, the systematic studies performed, and the analysis techniques are all crucial for the development of the subsequent PandaX-4T

Postdoc work: PandaX-4T @ CJPL-II

PandaX-4T subsystems

PandaX-4T subsystems

- Undertook construction and acceptance of some subsystems of PandaX-4T
- Ultrapure water system for water shielding
- Radon removal system for cleanroom

SLAC seminar, Aug 2024

Upgrade water shielding into a veto detector

- Instrument the water shielding with 270 8-inch PMTs to form a veto for gammas, neutrons, and cosmic rays
- Contributed to installation during my time as a shift manager at CJPL

PandaX-4T runs and multiple physics topics

Commissioning (<mark>Run 0</mark>)	Calibration	Distillation	Physics Run (<mark>Run 1</mark>)	Calibration	Detector Upgrade
2020/11/28 _ 2021/04/16	2021/04/17 _ 2021/06/09		2021/11/15 _ 2022/05/15	2022/05/16 _ 2022/07/08	

- Have completed data-taking of
 - Commissioning Run 0 (~ 95 d)
 - Physics Run 1 (~ 164 d)
- Detector upgrade and more physics runs are on-going
- Multiple physics topics are being studied now

Efficiency and background in Run0

Coordinated the efficiency calculation and several background estimations

- Background per unit target is improved from PandaX-II by 4 times (<10 keV)
- Projected S1 spectrum agrees with expected background with efficiency

WIMP search with PandaX-4T Run0

Phys. Rev. Lett. 127, 261802 (2021)

- 1058 candidates (expected 1054±39), 6 below NR median curve (expected 9.8±0.6)
- Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c²)
- Our limit is ~1.24 times stronger than XENON1T around 30 GeV/c²

Combined WIMP search results (Run 0+1)

• 1.54 tonne-year

• Fully blind analysis

 Most stringent constraint for WIMP mass above 100 GeV/c

Multiple physics in a wide energy range

	Sub-keV	1 keV 10 k	eV 100	keV	7 1 MeV	10 MeV	
¹³⁶ Xe					NURR / NURR		
(~9%)				2	շջիիչ օջին		
¹³⁴ Xe				2.10	00 / 000		
(~10%)				2V	ph / nvbb		
¹²⁴ Xe							
(~0.1%)			ZVECEC				
Xe all	Solar ⁸ B v	WIMP, other DM	C - 1- m			Alphas,	
isotopes	and light DM	models, and more	Solar pp v	,		muons, and more	

Identifying SS and MS

- MeV gamma-rays are mostly multi-site (MS) events; while signals (DBD) are mostly single site (SS)
- Identifying MS backgrounds with PMT waveforms

PMT pulse saturation and desaturation

- PMT bases suffer serious saturation for MeV range events.
- Match the rising slope of the saturated to the non-saturated templates in the same events → True charge collected
- For events in the energy range of 1 to 3 MeV, the average correction factor is $\sim\!3.0$ for the top PMT array

Position reconstruction improvement with desaturation

Before

3000

2500

2000

1500

1000

500

- Position reconstruction based on PAF (photon acceptance function) methods devloped in DM analysis
- Reconstruction at HE is significantly improved with desaturation
- Removed the band structure in R² distribution

600

۲ [mm]

35

Energy reconstruction

- Energy reconstruction: $E = 13.7 \text{ eV} \times (S1/PDE + S2_b/(EEE \times SEG_b))$
- Further tune S1 and S2_b vs. energy and position → deviations of peak positions to the percent level.

PDE: photon detection efficiency for S1 EEE: electron extraction efficiency SEG_b: single-electron gain for S2_b

Detection of $2\nu\beta\beta$ and $0\nu\beta\beta$

 $^{136}_{54}Xe \rightarrow ^{136}_{56}Ba + 2e^{-} + (2\bar{v}), \qquad Q_{\beta\beta} = 2.46 \text{MeV}$ $^{134}_{54}Xe \rightarrow ^{134}_{56}Ba + 2e^{-} + (2\bar{v}), \qquad Q_{\beta\beta} = 0.83 \text{MeV}$

- Detect $2\nu\beta\beta$ and $0\nu\beta\beta$ through energies of emitted electrons
- Precision measurement of $2\nu\beta\beta$ is a major first step for any $0\nu\beta\beta$ experiment
 - ¹³⁶Xe $2\nu\beta\beta$: discovered, $T_{1/2} = 2.2 \times 10^{21}$ yr
 - $^{134}\text{Xe}~2\nu\beta\beta$: next promising, $T_{1/2}\,{}^{\sim}10^{24}$ yr
- Understand better the background

Accurate background model for ¹³⁶Xe

- Robust estimation of backgrounds in fiducial volume (4 regions)
 - Three categories of material backgrounds:
 - Top, bottom and side
 - Input values based on HPGe assay results
 - ²¹⁴Pb in ²²²Rn chain inside LXe
 - High energy alpha events, and consider a float depletion

$^{136}\text{Xe}~2\nu\beta\beta$ half-life measurement

- First such result from a DM detector with natural xenon
 - 136 Xe $2\nu\beta\beta$ T_{1/2} = 2.27 ± 0.03(stat.) ± 0.10(syst.) × 10²¹ year
 - Comparable with enriched ¹³⁶Xe experiments
 - The widest ROI from 440 keV to 2800 keV

Status of ¹³⁶Xe $0\nu\beta\beta$ search

- Run0 + Run1 blind analysis
- Improved data analysis
 - FV optimization
 - Background model from "in-situ" fitting
 - Detector response model from calibration data and science data

• Sensitivity of $0\nu\beta\beta$ search in PandaX-4T: 2×10^{24} yr

SLAC seminar, Aug 2024

¹²⁴Xe double electron capture (DEC)

$$(A, Z) + 2e^{-} \rightarrow (A, Z - 2) + (2\nu_e)$$

- 2v/0v ECEC
 - Q = 2857 keV
 - Auger electron & X-ray cascades SS events
- 2vECEC is a 2nd order weak process, with a longest measured half-life so far

• XENONnT: $T_{1/2} = (1.18 \pm 0.13_{stat} \pm 0.14_{sys}) \times 10^{22} \text{ yr}$

[PRL 129, 161805 (2022)]

- LZ: $\mathrm{T_{1/2}}$ = (1.1 \pm 0.1 $_{stat}$ \pm 0.2 $_{sys}$) \times 10 22 yr

[H. Almeida, University of Coimbra, Master Thesis (2024)]

Signal + background model for 2vECEC in PandaX-4T

- Energy ROI: [25, 75] keV
- Construct a 2D (energy × time) signal and background model in ROI

Source	Spectrum	Evolution
¹²⁴ Xe	Multi-Gaussian	Constant
125	Multi-Gaussian	
¹²⁷ Xe	Gaussian @33keV	Decaying
¹³³ Xe	Tail into 75keV	
²¹⁴ Pb	Flat	222 Rn $lpha$
²¹² Pb	Flat	
⁸⁵ Kr	Flat	
Material ER	Flat	Constant
¹³⁶ Xe 2νββ	¹³⁶ Xe $2\nu\beta\beta$ Slope	
Solar v	Slope	

¹²⁴Xe 2vECEC half-life measurement in PandaX-4T

Projected spectra and time evolution

 Unbinned 2D fit to Run0+Run1 data in parameter space of (energy, time)

 Use a profile likelihood ratio (PLR) approach

- Preliminary measurement on ¹²⁴Xe 2vECEC half-life:
 - 9.4 \pm 0.9(stat.) \pm 1.5(syst.) \times 10²¹ yr

SLAC seminar, Aug 2024

Solar neutrino flux

- Solar pp neutrino: neutrino-electron elastic scattering
- Solar ⁸B neutrino: Coherent Elastic Neutrino-Nucleus

Scattering (CEvNS)

C. O'Hare PRL 127, 251802 (2021)

Measurement of solar pp v flux in PandaX-4T

- Spectrum fit to Run0 data in [24, 144] keV (0.63 tonne×year exposure)
- First direct measurement at a recoil energy below 150 keV
 - Solar pp v flux: (10.3 \pm 3.7 $_{stat.}$ \pm 9.7 $_{syst.}$) \times 10¹⁰ s⁻¹ cm⁻²
 - Upper limit: 24.6 \times 10¹⁰ s⁻¹ cm⁻² at 90% C.L.
- With reduced backgrounds and 6 tonne×year exposure in the future: ~30% uncertainty

Summary

- PandaX reached to the forefront of DM search and neutrino physics in recent years!
- WIMP searches with PandaX-II (Ph.D. work)
 - Extensive experience in experimental HEP
 - Comprehensive analysis of the full exposure data
- Neutrino research with PandaX-4T (Postdoc work)
 - Extend DM detector response to MeV range
 - ¹³⁶Xe and ¹³⁴Xe $2\nu\beta\beta/0\nu\beta\beta$
 - ¹²⁴Xe 2vECEC
 - Solar v flux: pp

Thanks very much for your attention!

Backup slides

Qiuhong Wang Fudan University On behalf of the PandaX Collaboration

Aug 13, SLAC

wangqiuhong@fudan.edu.cn

My research journey

- Dark matter search with PandaX-II (Ph.D.)
 - **Coordinated** physical analysis of full exposure data
 - **Developed** a novel method for neutron background estimation
 - Detector R&D, simulation program, operation, and maintenance
- Neutrino physics with PandaX-4T (Postdoc)
 - Undertook construction of two subsystems, contributed to detector design, simulation, and operation
 - Coordinated signal reconstruction in MeV range for ${}^{136}\text{Xe}~2\nu\beta\beta$ search
 - Coordinated ¹²⁴Xe 2vECEC search

Position Reconstruction in PandaX-II

- Trained with evenly distributed ^{83m}Kr calibration events
- Turn off 7 malfunctioned PMTs
 - 5 top and 2 bottom
- Data-driven position reconstruction: photon acceptance function
 - Analytically parameterized PAF (old)
 - Simulation-based PAF: optical simulation of the detector (new)

TPMT

Gate

Cathode

Bttm Scre

BPMT

SLAC seminar, Aug 2024

PandaX DM+nu Program - Qiuhong Wang, FDU

SE

Future upgrade to veto in PandaX-4T

Pure water veto

- 78% (13%) for neutron (gamma) veto
- Water-based liquid scintillator
 - ~5% blending, 500 photons / MeV
 - \sim 100% (60%) for neutron (gamma) veto

Neutron Veto Efficiency

Optical Simulations in Geant4

2 43

1.317

2683

30

ls

- Gadolinium-doping water veto (XENONnT) 0.5
 - 68% -> 87% for neutron veto
- LS-based veto (LZ)
 - Chemical and fire hazards for PandaX-4T

Fiducial volume for ¹³⁶Xe $2\nu\beta\beta$ search

• Compare the number of events of ^{83m}Kr and ²²⁰Rn with geometric volume; the non-linearity between the two <0.5% defines the cut in R direction

Counts

 10^{3}

 10^{2}

700-600-500-400-300-200-

- Z direction: smaller background rate
- Outer (dashed) region for cross-validation

Double beta decay

- $0\nu\beta\beta$: Golden channel for Majorana neutrino searches
- $2\nu\beta\beta$ candidate ¹³⁴Xe (10.4%): the next promising discoveries of $2\nu\beta\beta$

Isotope	Natural abundance[%]	Q_{etaeta} [MeV]	$T_{1/2}^{2 uetaeta}$ [yr]	136 v - 1
⁴⁸ Ca	0.187	4.26	4.2×10 ¹⁹	$100 \text{Xe} \rightarrow 1$
⁷⁶ Ge	7.8	2.04	1.5×10 ²¹	1-
⁸² Se	8.7	3.00	0.9×10 ²⁰	
⁹⁶ Zr	2.8	3.35	2.0×10 ¹⁹	
¹⁰⁰ Mo	9.8	3.04	7.1×10 ¹⁸	
¹¹⁶ Cd	7.5	2.81	3.0×10 ¹⁹	
¹³⁰ Te	34.1	2.53	0.9×10 ²¹	
¹³⁶ Xe	8.9	2.46	2.2×10 ²¹	
¹⁵⁰ Nd	5.6	3.37	7.8×10 ¹⁸	
¹²⁴ Xe	0.1	2.86	1.1×10 ²²	
¹³⁴ Xe	10.4	0.83	~10 ²⁴	the next promising
¹²⁸ Te	31.7	0.87	~10 ²⁴	discoveries of $2\nu\beta\beta$

$^{134}\text{Xe}~2\nu\beta\beta$ and $0\nu\beta\beta$

• Double beta decay of ¹³⁴Xe into ¹³⁴Ba:

 134 Xe \rightarrow^{134} Ba⁺⁺ + 2 e^{-} (+2 $\bar{\nu}_e$)

- Q-value is 825.8±0.9 keV
- Half-life from theoretical predictions: ~10²⁴ yr
- Best experiment limits from EXO-200 with 29.6 kg·yr data of ¹³⁴Xe :
 - $T_{1/2}^{2\nu\beta\beta}$ >8.7·1020 yr at 90% CL
 - $T_{1/2}^{0\nu\beta\beta}$ >1.1·1023 yr at 90% CL
- Isotopic composition in EXO-200 : 80.7% 136 Xe and 19.1% ¹³⁴Xe
- Energy spectrum: ROI between 460 keV and 740 keV for $2\nu\beta\beta$, energy resolution σ/E =3.56% @825.8 keV

Phys.Rev.D 96 (2017) 9, 092001

Down to [200, 1000] keV for ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ search (

- ¹³⁴Xe event fraction in ROI [200, 1000] keV
 - 60.56% (2νββ), 99.98% (0νββ)
- Compared to EXO-200, PandaX-4T has:
 - More ¹³⁴Xe; much less ¹³⁶Xe; wider energy range; better resolution;
 - Self shielding effect
 - Discovery possible

	Live Time	¹³⁴ Xe mass	¹³⁶ Xe abundance	Analysis threshold	Resolution $@Q_{\beta\beta}$
PandaX-4T	94.9 days	68.7 kg	8.9%	200 keV	2.4%
EXO-200	600 days	18.1 kg	81%	470 keV	3.56%

Background model for ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$ search

• Down to [200, 1000] keV, more backgrounds in LXe need to be considered

	Component	Input Counts	Constraint	
	⁶⁰ Co	130	13%	
Materials	⁴⁰ K	133	8%	
	²³² Th	950	5%	Measured in ¹³⁶ Xe 2 $ uetaeta$ analysis
	²³⁸ U	274	8%	Research 2022 (2022) 9798721
	¹³⁶ Xe	12372	5%	
	²¹² Pb	1012	29%	Measured by its daughter ²¹² Po alpha decay
	⁸⁵ Kr	296	52%	Determined by β – γ emission through the metastable state 85m Rb
LXe	¹³³ Xe	3423	10%	Estimated the β + γ shoulder of ¹³³ Xe between 90 and 120 keV
	²¹⁴ Pb	19429	Free	Determined by ²²² Rn
	¹²⁵ Xe	-	Free	short-lived xenon isotopes induced by neutron calibration
	Other Xe	-	Free	¹²⁷ Xe and ^{129m} Xe

$^{134}\text{Xe}~2\nu\beta\beta$ and $0\nu\beta\beta$ search in PandaX-4T

- Simultaneous fit for ¹³⁴Xe $2\nu\beta\beta$ and $0\nu\beta\beta$
- Final counts of $2\nu\beta\beta$ and $0\nu\beta\beta$: 10 ± 269(stat.) ± 680(syst.) and 105 ± 48(stat.) ± 38(syst.)
- 90% C.L. lower limits on the half-life: $T_{1/2}^{2\nu\beta\beta} > 2.8 \times 10^{22}$ yr and $T_{1/2}^{0\nu\beta\beta} > 3.0 \times 10^{23}$ yr

Phys. Rev. Lett. 132 (2024) 15, 152502

Towards the neutrino floor from solar ⁸B

- Lowering selection threshold for solar ⁸B CEvNS
 - Cut on the scintillation signal (S1) from 2 PE to 0.3 PE
 - Optimizing signal selection cuts with waveform simulation
- Accidental paired (AC) background modeling and rejection

Control of accidental background in ⁸B search

- Use "scrambled" real data to model accidental background
- A multi-variate (BDT) algorithm trained to suppress AC background
- Training/selection is blinded
- postBDT: N_{obs}=1, N_{bkg}=1.6, N_{sig}=1.7

$\mathrm{N}_{\mathrm{hit}}$	S2 range [PE]	BDT	ER	NR	Surf	AC	Total BKG	⁸ B	Obs
2	65-230	pre post	$\begin{array}{c} 0.04 \\ 0.02 \end{array}$	$\begin{array}{c} 0.10\\ 0.04 \end{array}$	$\begin{array}{c} 0.14 \\ 0.03 \end{array}$	$\begin{array}{c} 62.43 \\ 1.41 \end{array}$	$\begin{array}{c} 62.71 \\ 1.50 \end{array}$	$\begin{array}{c} 2.32\\ 1.42 \end{array}$	$\frac{59}{1}$
3	65-190	pre post	$\begin{array}{c} 0.01 \\ 0.00 \end{array}$	$\begin{array}{c} 0.05 \\ 0.02 \end{array}$	$\begin{array}{c} 0.08\\ 0.03 \end{array}$	$\begin{array}{c} 0.79 \\ 0.02 \end{array}$	$\begin{array}{c} 0.93 \\ 0.07 \end{array}$	$0.42 \\ 0.29$	2 0

58

Constraints on ⁸B neutrino

• A multi-variate (BDT) algorithm trained to suppress AC background

• Blind analysis with 0.48 tonne-year data in Run0

- Leading constraint on ⁸B neutrino flux through CEvNS
 - Upper limit of 9.0 \times 10 6 cm $^{-2}$ s $^{-1}$

ER+NR+AC	8B	Total prediction	Unblind data
1.46	1.42	2.88	
0.04	0.29	0.33	0

BOI (BDT applied)

Phys. Rev. Lett. 130, 021802 (2023)