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Accelerating ab initio simulations using surrogate machine learning models

Typically, first-principle calculations are computationally expensive. This problem is usually aggravated
when modelling materials due to the large number of atoms involved in the models. Therefore, the
design of robust and fast optimizers has always been a hot topic in this field. The desired algorithms
must minimize the number of ab initio function calls as much as possible without compromising the
accuracy of the simulated properties. Our approach is based on a machine learning surrogate model
which allows to substantially reduce the number of function calls in the search of the optimal
solution. Here, we present the evidence of the aforementioned acceleration for two of the most
commonly encountered optimizations problems in materials science: energy minimization and
transition-state search, such as structure optimizations and Nudged Elastic Band (NEB) calculations.

Summary:

1. Machine Learning model:

Fig. 1. Predicted mean improves systematically when including analytical gradients to the GPR model
(compare first and second row).
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2 Accelerating transition-state search:

3. Accelerating and improving the robustness of structure optimization:

Objective:
Finding the minimum energy path (in Fig. 2)
connecting the points A to B with the
minimum number of function evaluations
(energy and forces) possible.

Prototype model: Müller-Brown potential
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Fig. 2. Potential energy landscape for the
Müller-Brown potential.
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1) Transition-state search. Due to the fact that all images must be evaluated in each iteration, we
observe a notoriously high number of function calls performed by the standard CI-NEB algorithm
(259 energy and force evaluations, Fig. 3a). Our machine learning surrogate model allows to
substantially reduce the number of functions calls in order to find the same saddle-point for the
transition from A to B (only 14 energy and force evaluations, Fig. 3b).
2) Structural optimization. Our GPR-based algorithm performs as well as the most popular quasi-Newton
type algorithms in terms of number of function evaluations (Table I). In addition, the posterior mean
obtained by the GPR allows to gain robustness when the function and its derivatives become noisy (Fig. 4).
When dealing with noisy data the BFGS, CG and Nelder-Mead algorithms are incapable of reaching the
desired convergence.
* We have tested our algorithms with atomistic systems, including structures with a large number
of atoms (>100 atoms per unit cell). The performance of the method holds for the prototype and
the atomistic systems without sacrificing the accuracy of the results.

- CatLearn: A package for building and testing atomistic machine learning models.
- Gaussian Progress Regression (GPR) routines are implemented in CatLearn.
- Predicted values and uncertainties of the predictions are obtained using GPR.
- Squared exponential kernel :

- CatLearn supports multiple covarying GP. This model can learn from the observations and first
derivative of the same observations (e.g. energies and forces). By including more information, the integral variance
of the model is decreased systematically (Fig. 1). A detailed mathematical derivation can be found in Ref. 1.
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Machine Learning algorithm:
We use a GPR model to build an “artificial” potential that can be used for obtaining a predicted NEB path. From this predicted path we evaluate the image with maximum uncertainty (only
one image at the time) and we add it to the training list in order to improve the predicted potential energy surface (PES). After a few iterations the uncertainty of each image composing
the NEB path goes bellow our stopping criteria (e.g. <5 meV), then we evaluate the top image to ensure that we found a saddle-point.
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Objective:
Finding the minimum of the prototype
functions (in Fig. 3) from a common
initial geometry (I) to the nearest local
minima (F) employing the minimum
number of function calls (energy and
forces) possible.

Machine Learning algorithm:
We use a GPR model to build an “artificial” potential that we can minimize
and predict an optimal value. We evaluate the image predicted from the
surrogate model and we train the process including the evaluated image
(expensive calculation), improving the predicted PES. After a few iterations
the “next suggested training point” satisfies the convergence criteria.

Fig. 4. Prototype models used to test the performance of the different algorithms (see Table I).
Note: in the Rosenbrock(+noise) function we added an artificial normally distributed random noise to the function.

MADE IN SILICON VALLEY!! ! ! ! ! !  
So,  we have a code ready for action:

P lea se  a sk  u s  fo r  a  l i ve  demons t r a t ion  o f  any  o f  t he  a l gor i t hms  
presen ted  i n  th i s  pos te r. I n  add i t i on , we  have  a  code  ava i l ab l e  o f  t he  

a tom i s t i c  imp lementa t ion  o f  t he se  a l gor i t hms  work ing  i n  a  u ser-
f r i end ly  f a sh ion  ( s im i l a r l y  t han  the  ones  i n c l uded  i n  ASE ) .

P l e a se v i s i t  u s : h t tp s : / / g i t hub . com/SUNC AT-Center /Ca tLearn

Fig. 3. (a) Evolution of the minimum energy path (MEP) for the Müller-Brown potential from the site A to B using Climbing Image NEB as implemented in ASE. (b) Evolution of
the predicted potential energy surface and predicted NEB path obtained with our machine learning algorithm. (c, d) Converged minimum energy paths.

Himmelblau Goldstein-Price Rosenbrock Rosenbrock (+noise)

BFGS (L-BFGS-B) 19 17 29 Failed
CG 22 19 32 Failed

Nelder-Mead 82 56 183 Failed
CatLearn 15 8 16 39
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Table I. Number of functions evaluations (energy and forces) performed by the Broyden-Fletcher-Goldfarb-Shanno
(BFGS), Conjugate Gradients (CG), Nelder-Mead (as implemented in Scipy, Ref. 4) and CatLearn algorithms in order to
achieve convergence (max(|fi|) < 0.01 a.u.) for the different prototype models shown in Fig. 4.

4. Observations:
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http://scipy.org/

