
Machine Learning In Hardware

R. Herbst

 Deploying ML In Hardware
FPGAs & ASICs

SLAC TID-AIR
Technology Innovation Directorate
Advanced Instrumentation for Research Division

1

On board 40G Ethernet switch with
10G to each processing FPGA
Supports 15 slot full mesh
backplane interconnect!

Data processing daughter board with
dual Zynq 7045 FPGAs
12 bi-direction HS links between each
FPGA and the RTM

Front panel Ethernet
2 x 4, 10-GE SFP+

Application specific Rear Transition Module
(RTM) for experiment specific interfaces
96 High Speed bi-dir links to SOCs

SOC platform combines stable base firmware /
software with application specific cores
● HLS for C++ based algorithms & compression
● Matlab for RF processing

Numerous experiments
● LSST
● Heavy Photon Search, LDMX
● DUNE 35Ton / ProtoDUNE
● ATLAS Muon
● ITK Development
● nEXO (Baseline)

High performance platform with 9 clustered
processing elements (SOC)
● Dual core ARM A-9 processor
● 1GB DDR3 memory
● Large FPGA fabric with numerous DSP

processing elements

DP

SP

The RCE Platform

1

Commercial Xilinx Hardware

Xilinx KCU1500 co-processor
○ XCKU115 FPGA
○ 2 QSFP optical modules
○ 16GB DDR
○ Amazon AWS

Xilinx Virtex UltraScale+ VCU1525
○ XCVU9P FPGA
○ 2 QSFP optical modules
○ 64GB DDR

Xilinx Alveo U200
○ 2 QSFP28 optical modules
○ 64GB DDR

Xilinx Alveo U250
○ 2 QSFP28 optical modules
○ 64GB DDR

Partial
Reconfiguration

Application

MIG[3]

QSFP[0]:TX[3:0]
QSFP[0]:RX[3:0]
QSFP[0]:156.25MHz
QSFP[0]:125MHz

QSFP[1]:TX[3:0]
QSFP[1]:RX[3:0]
QSFP[1]:156.25MHz
QSFP[1]:125MHz

156.25MHz UserClock

AXIS[8:0] 128-bit
250MHz

MIG[2]

MIG[1]

MIG[0]

AXIS
DMA

AXI
PCIe

AXI
Interconnect

AXI
Interconnect

AXI
Interconnect

AXI
Interconnect

AXI[3:0] 128-bit
250MHz

AXI[3:0] 128-bit
250MHz

AXI[3:0] 128-bit
250MHz

AXI[3:0] 128-bit
250MHz

AXI 512-bit
300MHz

AXI 512-bit
300MHz

AXI 512-bit
300MHz

AXI 512-bit
300MHz

AXI 256-bit
250MHz

PCIe GEN3
8 Lanes

DDR4
64-bit, ECC,
2400 Mbps

DDR4
64-bit, NON-ECC,

2400 Mbps
DDR4

64-bit, ECC,
2400 Mbps

DDR4
64-bit, ECC,
2400 Mbps

● Provides standard application interfaces which are portable between hardware platforms
● Also provides LCLS1 and LCLS2 timing cores along with timing/data event builder blocks
● Open source version of Amazon Cloud Computing node, static support blocks with user

defined partial reconfiguration core

TID-AIR ES PCI-Express Application Framework

Detector
Region

Detector
Region

Detector
Region

FPGA
Conv Conv

FPGA
Conv Conv

FPGA
Conv Conv

FPGA
Full

FPGA
Full

FPGA
Full

FPGA

Full

Matching To Common DAQ Structures
• Simple to deploy FPGA firmware for classification

• Leave out back propagation
• Each layer is pipelined, allowing higher frame rate
• Layers are flexible, can exist in different FPGAs

- Take advantage of 8-bit quantization for DSP density

Classification
Results To
Back End DAQ/Trigger

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Deploying neural network structures in
mid-level daq eliminates need to event build
for classification purposes

• First few layers have minimal overlap
of data (convolution)

• Inter-FPGA connections overlap data
- Inter-firmware RUDP
- Shared hybrid memory cube (HMC)

• Possible to design networks which
minimize or eliminate overlaps

Front
End

Front
End

Front
End

Front
End

• Xilinx tool flow is geared towards co-processor based machine learning
• Possible some openCl design flows allow self contained classification system
• Proper solution allows the deployed networks to be integrated into a layered DAQ

system
• Working design flow for deploying neural networks in FPGA auto generated from

Caffe model:

Caffe
prototxt

file

Train &
Test Data

Sets

Caffe train and test software
(GPU or FPGA accelerated)

Weight &
Bias Values

CNN
Config
Record
(VHDL)

Synthesis / Place & Route FPGA

VHDL config record
derived directly from
prototxt file (python)

• Four categories of approaches to ML in FPGAs *
• Single processing engine

- Systolic array, processing each layer sequentially
- Software based processing with FPGA coprocessor

• Streaming architecture
- One processing engine per network layer
- Synchronous dataflow (SDF) model for mapping CNNs to FPGAs
- Often involving software coordination, but not necessary

• Vector processor
- Instructions specific to accelerating the operations of convolutions
- Software driven processing with FPGA coprocessor

• Neurosynaptic processor
- Map digital neurons and their interconnecting weights
- ASIC based processing engines

• FPGA based solutions tend to fall into the “Streaming architecture” or
“vector processor” categories

* arXiv:1612.07119 [cs.CV]: “FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference”

G. Blaj, C.E. Chang, R. Herbst, J. Thayer

• Framework for deploying ML models on distributed FPGA
systems (R. Herbst):
- Preliminary version demonstrated for single FPGA

systems
- Using the existing RCE platform hardware (developed at

SLAC, widely deployed: LCLS, LCLS-II, CERN-Atlas,
LSST, Fermi Lab, Jefferson Lab, LSST)

• ML based algorithms for reducing and summarizing data
from 2D detectors (G. Blaj):
- Preliminary version matches performance of ‘classical’

algorithms with 1-2 orders of magnitude speed up
- Sequence of hand-crafted filters (based on convolutional

networks with optimized architectures)
• Bonus: each layer, each node have clear physical

meaning
• Co-development with firmware framework and

optimization (conversion to integers, pruning)

• Training deep learning models for data summarization, event
vetoing (C.-E. Chang, scientists) using existing data and
standard GPU training

• Performance optimization and validation with existing
application-specific LCLS data sets
(J. Thayer, scientists):
- Applications: single particle imaging, diffuse scattering,

protein crystallography, etc.

• Will enable:
- Real time summarization (online AMI), compression
- Automatic event vetoing, tuning of experiment parameters

• Risks: limited
- Existing hardware: PCI-Express based FPGAs, scalable

RCE platform, natively supporting LCLS and LCLS-II DAQ
- Preliminary version of firmware framework for ML model

deployment demonstrated for single FPGAs
- Preliminary version of low-level algorithms demonstrated
- Application-specific LCLS data sets already exist

Hardware:
RCE platform

•Exists, widely deployed
•Scalable

Firmware
Deploymment

•Demonstrated on 1 FPGA
•Extending to distributed FPGA
deployment

Low level
Algorithms

•Demonstrated Tensorflow
implementation

•Matching ‘classical’
performance, 1-2 orders of
magnitude faster

Deep learning

•Classification, vetoing
•Training with existing LCLS
data

Hardware

Firmware

Low level

Deep
Learning

System optimization

LDRD Proposal: Approach

Proposed ML Framework
• VHDL record driven generation of CNN synthesized into a pipelined classification engine]
• Deployed in TID-AIRs Firmware Library SURF

• https://github.com/slaclab/surf
• LeNet (single digital written decimal recognition) Example:

 constant CNN_LENET_C : CnnLayerConfigArray(5 downto 0) := (

 0 => genCnnConvLayer (strideX => 1, strideY => 1,
 kernSizeX => 5, kernSizeY => 5,
 filterCnt => 20,
 padX => 0, padY => 0,
 chanCnt => 10, rectEn => false),

 1 => genCnnPoolLayer (strideX => 2, strideY => 2, kernSizeX => 2, kernSizeY => 2),

 2 => genCnnConvLayer (strideX => 1, strideY => 1,
 kernSizeX => 5, kernSizeY => 5,
 filterCnt => 50,
 padX => 0, padY => 0,
 chanCnt => 50, rectEn => false),

 3 => genCnnPoolLayer (strideX => 2, strideY => 2, kernSizeX => 2, kernSizeY => 2),

 4 => genCnnFullLayer (numOutputs => 500, chanCnt => 50, rectEn => true),

 5 => genCnnFullLayer (numOutputs => 10, chanCnt => 1, rectEn => false));

ML Framework Proof Of Concept

Approaches To ML In Hardware Existing Frameworks

• The following frameworks are being studied to see if they can be
used or serve as a guide for a SLAC framework

• Xilinx: FINN
• Open Source
• Xilinx Vivado HLS
• Binarized Neural Networks (BNNs)
• https://github.com/Xilinx/FINN

• CERN, Columbia, Fermilan, MIT, UI, etc: hls4ml
• Open Source
• Xilinx Vivado HLS
• Demonstrated streaming inference with small networks
• https://hls-fpga-machine-learning.github.io/hls4ml/

• Imperial College London: fpgaConvNet
• Source Not Available
• Xilinx Vivado HLS
• http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

https://github.com/Xilinx/FINN
https://hls-fpga-machine-learning.github.io/hls4ml/
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

