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On board 40G Ethernet switch with 
10G to each processing FPGA
Supports 15 slot full mesh 
backplane interconnect!

Data processing daughter board with 
dual Zynq 7045 FPGAs
12 bi-direction HS links between each 
FPGA and the RTM

Front panel Ethernet
2 x 4, 10-GE SFP+

Application specific Rear Transition Module 
(RTM) for experiment specific interfaces 
96 High Speed bi-dir links to SOCs

SOC platform combines stable base firmware / 
software with application specific cores
● HLS for C++ based algorithms & compression
● Matlab for RF processing

Numerous experiments
● LSST
● Heavy Photon Search, LDMX
● DUNE 35Ton / ProtoDUNE
● ATLAS Muon
● ITK Development
● nEXO (Baseline)

High performance platform with 9 clustered 
processing elements (SOC)
● Dual core ARM A-9 processor 
● 1GB DDR3 memory
● Large FPGA fabric with numerous DSP 

processing elements

DP

SP

The RCE Platform
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Commercial Xilinx Hardware

Xilinx KCU1500 co-processor
○ XCKU115 FPGA
○ 2 QSFP optical modules
○ 16GB DDR
○ Amazon AWS

Xilinx Virtex UltraScale+ VCU1525
○ XCVU9P FPGA
○ 2 QSFP optical modules
○ 64GB DDR

Xilinx Alveo U200
○ 2 QSFP28 optical modules
○ 64GB DDR

Xilinx Alveo U250
○ 2 QSFP28 optical modules
○ 64GB DDR
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● Provides standard application interfaces which are portable between hardware platforms
● Also provides LCLS1 and LCLS2 timing cores along with timing/data event builder blocks
● Open source version of Amazon Cloud Computing node, static support blocks with user 

defined partial reconfiguration core

TID-AIR ES PCI-Express Application Framework
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Matching To Common DAQ Structures
• Simple to deploy FPGA firmware for classification

• Leave out back propagation
• Each layer is pipelined, allowing higher frame rate
• Layers are flexible, can exist in different FPGAs

- Take advantage of 8-bit quantization for DSP density

Classification
Results To
Back End DAQ/Trigger
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Deploying neural network structures in 
mid-level daq eliminates need to event build 
for classification purposes

• First few layers have minimal overlap 
of data (convolution)

• Inter-FPGA connections overlap data
- Inter-firmware RUDP
- Shared hybrid memory cube (HMC)

• Possible to design networks which 
minimize or eliminate overlaps

Front
End

Front
End

Front
End

Front
End

• Xilinx tool flow is geared towards co-processor based machine learning
• Possible some openCl design flows allow self contained classification system
• Proper solution allows the deployed networks to be integrated into a layered DAQ 

system
• Working design flow for deploying neural networks in FPGA auto generated from 

Caffe model:

Caffe
prototxt 

file

Train &
Test Data 

Sets

Caffe train and test software
(GPU or FPGA accelerated) 

Weight &
Bias Values

CNN
Config
Record
(VHDL)

Synthesis / Place & Route FPGA

VHDL config record 
derived directly from 
prototxt file (python)

• Four categories of approaches to ML in FPGAs *
• Single processing engine

- Systolic array, processing each layer sequentially
- Software based processing with FPGA coprocessor

• Streaming architecture
- One processing engine per network layer
- Synchronous dataflow (SDF) model for mapping CNNs to FPGAs
- Often involving software coordination, but not necessary

• Vector processor
- Instructions specific to accelerating the operations of convolutions
- Software driven processing with FPGA coprocessor

• Neurosynaptic processor
- Map digital neurons and their interconnecting weights
- ASIC based processing engines

• FPGA based solutions tend to fall into the “Streaming architecture” or 
“vector processor” categories

* arXiv:1612.07119 [cs.CV]: “FINN: A Framework for Fast, Scalable Binarized Neural 
Network Inference”

G. Blaj, C.E. Chang, R. Herbst, J. Thayer

• Framework for deploying ML models on distributed FPGA 
systems (R. Herbst):
- Preliminary version demonstrated for single FPGA 

systems
- Using the existing RCE platform hardware (developed at 

SLAC, widely deployed: LCLS, LCLS-II, CERN-Atlas, 
LSST, Fermi Lab, Jefferson Lab, LSST)

• ML based algorithms for reducing and summarizing data 
from 2D detectors (G. Blaj):
- Preliminary version matches performance of ‘classical’ 

algorithms with 1-2 orders of magnitude speed up
- Sequence of hand-crafted filters (based on convolutional 

networks with optimized architectures)
• Bonus: each layer, each node have clear physical 

meaning
• Co-development with firmware framework and 

optimization (conversion to integers, pruning)

• Training deep learning models for data summarization, event 
vetoing (C.-E. Chang, scientists) using existing data and 
standard GPU training

• Performance optimization and validation with existing 
application-specific LCLS data sets
(J. Thayer, scientists):
- Applications: single particle imaging, diffuse scattering, 

protein crystallography, etc.

• Will enable:
- Real time summarization (online AMI), compression
- Automatic event vetoing, tuning of experiment parameters

• Risks: limited
- Existing hardware: PCI-Express based FPGAs, scalable 

RCE platform, natively supporting LCLS and LCLS-II DAQ
- Preliminary version of firmware framework for ML model 

deployment demonstrated for single FPGAs
- Preliminary version of low-level algorithms demonstrated
- Application-specific LCLS data sets already exist

Hardware:
RCE platform

•Exists, widely deployed
•Scalable

Firmware
Deploymment

•Demonstrated on 1 FPGA
•Extending to distributed FPGA 
deployment

Low level
Algorithms

•Demonstrated Tensorflow 
implementation

•Matching ‘classical’ 
performance, 1-2 orders of 
magnitude faster

Deep learning

•Classification, vetoing
•Training with existing LCLS 
data

Hardware

Firmware

Low level

Deep 
Learning

System optimization

LDRD Proposal: Approach

Proposed ML Framework
• VHDL record driven generation of CNN synthesized into a pipelined classification engine]
• Deployed in TID-AIRs Firmware Library SURF

• https://github.com/slaclab/surf
• LeNet (single digital written decimal recognition) Example:

   constant CNN_LENET_C : CnnLayerConfigArray(5 downto 0) := (

      0 => genCnnConvLayer (strideX   => 1,  strideY   => 1, 
                            kernSizeX => 5,  kernSizeY => 5, 
                            filterCnt => 20, 
                            padX      => 0,  padY      => 0,
                            chanCnt   => 10, rectEn    => false),

      1 => genCnnPoolLayer (strideX   => 2, strideY   => 2, kernSizeX => 2, kernSizeY => 2),

      2 => genCnnConvLayer (strideX   => 1,  strideY   => 1, 
                            kernSizeX => 5,  kernSizeY => 5, 
                            filterCnt => 50, 
                            padX      => 0,  padY      => 0,
                            chanCnt   => 50, rectEn    => false),

      3 => genCnnPoolLayer (strideX   => 2, strideY   => 2, kernSizeX => 2, kernSizeY => 2),

      4 => genCnnFullLayer ( numOutputs => 500, chanCnt => 50, rectEn => true ),

      5 => genCnnFullLayer ( numOutputs => 10, chanCnt => 1, rectEn => false ));

ML Framework Proof Of Concept

Approaches To ML In Hardware Existing Frameworks

• The following frameworks are being studied to see if they can be 
used or serve as a guide for a SLAC framework

• Xilinx: FINN
• Open Source
• Xilinx Vivado HLS
• Binarized Neural Networks (BNNs)
• https://github.com/Xilinx/FINN

• CERN, Columbia, Fermilan, MIT, UI, etc: hls4ml
• Open Source
• Xilinx Vivado HLS
• Demonstrated streaming inference with small networks
• https://hls-fpga-machine-learning.github.io/hls4ml/

• Imperial College London: fpgaConvNet
• Source Not Available
• Xilinx Vivado HLS
• http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

https://github.com/Xilinx/FINN
https://hls-fpga-machine-learning.github.io/hls4ml/
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

