
Ultrafast Processing of Pixel Detector Data
with Machine Learning

G. Blaj∗, C.-E. Chang, C. J. Kenney

∗ blaj@slac.stanford.edu

Ultrafast Processing of Pixel Detector Data
with Machine Learning

G. Blaj∗, C.-E. Chang, C. J. Kenney

∗ blaj@slac.stanford.edu

Introduction

•Modern photon science was enabled by advances in 2D
pixel detectors
•Free Electron Laser (FEL) requirements rapidly increasing:

– Currently around 120Hz, 1 GB/s (typical LCLS experiment)
– Increasing rates towards 100 kHz (LCLS-II)
– Increasing amounts of data, towards ∼1 TB/s (LCLS-II)
– Accelerator, detector developments well underway
• LCLS-II data needs acquisition, storage, analysis:

– Online analysis necessary (experiment optimization)
– Storage and offline analysis necessary, expensive
– Online noise reduction and compression necessary
•An LCLS-II ’Data Reduction Pipeline’ for online processing:

– First prototype designed
– Servers with ’classical’ multi-CPU processing
– Requires hundreds or thousands of parallel servers
– Parallel CPU code: is architecture dependent, complex
– GPU code: strongly architecture dependent, complex

Raw
Data

Dark
Correction

Common
Mode

Correction

Gain
Correction

Photon
Charge

Summing

Photon
Subpixel

Resolution
Summary

Fig. 1: Typical steps in processing data from x-ray pixel detectors. Usually, Photon
Finding and Subpixel Position are not extracted due to the high computational com-
plexity, however, extracting them greatly increases data quality, enabling sparsification
and efficient compression without photon loss. In this paper, we present complete
Tensorflow models for all steps.

Machine Learning

•Similar challenges in computer vision a decade ago: led to
current explosion of machine learning (ML) hardware and
software and ongoing rapid development
•Tensorflow [1], a software framework for machine learning:

– Compact, elegant code, enabling rapid development
– Hardware agnostic code enabling scalable deployment
– Native support for e.g., GPUs enabling high performance
– Seamless integration with Python, Numpy
•We developed novel models1 for pixel data processing in

Tensorflow (implementing all steps in Fig. 1):
– 1-2 orders of magnitude faster on modest hardware;
– Optimization: expected orders of magnitude speed-up
– Basis for future deep learning for radiation pixel detectors
– Each layer, value: clear meaning (not a black box)
– Effortlessly benefits from future ML advances

1 Existing machine learning approaches to computer vision are not applicable to x-ray photon detection
due to very different features, signal and noise statistics, etc.; while, e.g., autoencoders or deep learning
models currently lose photon information, the models presented here preserve full photon information.

Methods

• ePix100 camera [2] intentionally operated in challenging
conditions to maximize photon charge sharing:
– Spectroscopic sensor with narrow 25µm× 100µm pixels
– 500µm thick, underbiased (100 V) Si sensor
– 120Hz, 704× 768 pixels, 16(14) bit, 120MB/s

– 55Fe source (emitting mainly Mn Kα at 5.9 keV)
• Large data set of 50 000 frames at low photon occupancy
•Processing computers:

– CPU system: Macbook Pro, 2.9 GHz Intel Core i7, 16 GB
2133 MHz LPDDR3, Numba 0.38, Tensorflow 1.1

– GPU system: Nvidia GTX 1060, Intel Xeon X3480,
DDR3-1066 CAS latency 7, Tensorflow 1.4

– Processing time excludes time to read raw data and
buffer in RAM (similar to real time data acquisition sys-
tems which receive raw data with little overhead)

Dark, Gain Correction in Tensorflow

•Dark and gain correction are simple, see diagram in Fig. 2:

Raw
NxHxWx1

−

Dark
1xHxWx1

Frames 0
NxHxWx1

/

Gain
1xHxWx1

Frames1
NxHxWx1

Fig. 2: The Tensorflow model for dark and gain correction is trivial. We provide raw data
in ’Frames0’ input, formatted in a rank 4 tensor with N frames (minibatch size), image
size HxW=704× 768 pixels, and ’feature size’ 1 (correspoding to pixel intensity). The
dimensions of each tensor are indicated in the diagrams. After dark subtraction and
gain correction, we obtain the corrected minibatch ’Frames1’. Accomodating multiple
darks and gains in auto-ranging detectors is also straightforward (not shown).

Common Mode in Tensorflow

•Fig. 3 shows a robust estimator for frame common mode:

Frames1
NxHxWx1

<

3σ

Noise?
NxHxWx1

• Noise
NxHxWx1

Σ

Σ

ΣN0

Nx1x1x1

N0

Nx1x1x1
max

√
HW

N
Nx1x1x1

/
CM

Nx1x1x1

− Frames2
NxHxWx1

Fig. 3: The Tensorflow model for common mode correction appears complex, however,
most of the diagram performs a more robust noise segmentation and average, which
scales to high beam intensity without introducing spurious noise when only a small
fraction of pixels measure zero noise (within 3σ); this design can be simplified when
operating only at low photon occupancy (i.e., sparse photons).

•This model can also reduce row and column common
mode by summing along the corresponding dimensions.

Photon Charge Summing in TF

•At low occupancies, charge summing reverts the loss of
spectroscopic information due to charge sharing of a pho-
ton signal over multiple pixels (inherent to pixel detectors)
•Uses two convolution kernels (see F0, F1 in Fig. 4)

(a)
F0

(b)
F1

5

3

3

2

2

1
(c)

F1Nmin
(d)

F1∆x
(e)

F1∆y

1

0

1

0.5

0

-0.5

-1

Fig. 4: Photon finding relies in matching the shape of the photon signal (distributed over
one or more neighboring pixels) with one of the 6 features in filter F1 (b). The shape
is identified by sufficient overlap with filter F1, as determined by the F1Nmin tensor
(c), while not extended over the edge defined by filter F0 (a). The full convolutional
model is shown in Fig. 5. Subpixel resolution can be obtained as shown in Fig. 6,
using convolutional filters F1∆x and F1∆y depicted in (d) and (e), respectively. Typically
only the first 4 features are used (we used 6 to match the charge sharing resulting
from narrow 25µm pixels and underbiasing). F0, F1 and F1Nmin must be judiciously
matched to detect all shapes of interest while preventing multiple feature matching.

Frames2
NxHxWx1

>

3σ

Signal?
NxHxWx1

•

Signal
NxHxWx1

F1
4x5x1x6

∗

∗

Size, pix
NxHxWx6

Droplet
NxHxWx6

F0
4x5x1x6

∗ Overflow?
NxHxWx6

== 0

F1Nmin
1x1x1x6

≥ AND

Valid?
NxHxWx6

• ΣF
Frames3
NxHxWx1

Fig. 5: Photon charge summing is based on several convolution operations (∗) for
validating photon hits and calculating the corresponding photon energy. The output is
either the reconstructed photon energy placed in the appropriate pixel (for valid hits) or
zero otherwise. Careful design of filters F0, F1 and F1Nmin allow detecting hits with
arbitrary shapes in the different feature layers F while preventing multiple detection.

•At high photon occupancy, photon counting can be per-
formed by dividing Frames2 by the single photon gain and
then rounding to the nearest integer.

Subpixel Resolution in Tensorflow

F1∆x
4x5x1x6

Signal
NxHxWx1

∗ Momentum
NxHxWx6

/

Droplet
NxHxWx6

NxHxWx6

Valid?
NxHxWx6

• Σ ∆x
NxHxWx1

Fig. 6: Extracting the ∆x subpixel photon centroids (expressed in pixel pitches) is
straightforward and fast, reusing intermediary layers from Fig. 5. Similarly, ∆y can be
obtained by using F1∆y. The centroids require linearization to yield actual positions.

Summarization in Tensorflow

•Tensorflow functions for histogramming, sparsification, av-
eraging over different dimensions, etc., enable reducing
massive data sets to small summaries in a fraction of the
time required by, e.g., similar compiled Numba functions
•These functions enable both rapid online analysis and on-

line data reduction, before buffering and storage in the data
acquisition system, without loss of photon data.

Results: Performance

• 1 to 2 orders of magnitude speed increase easily ob-
tained, despite intentionally challenging images, inexpen-
sive GPU, and inefficient first implementation:

100 101 102

Batch size (frames)

100

101

102

Fr
am

es
pe

rs
ec

on
d

(H
z)

optimal performance: 63.4 Hz

5.5 Hz5.5 Hz
1.4 Hz

GPU Tensorflow
CPU Tensorflow
CPU Numba

Fig. 7: Performance chart of the tensorflow model, shown on a log-log plot. Blue stars
indicate the performance of “classical” CPU compiled code (using Numba with care-
ful performance optimizations) with a processing rate of 1.4Hz (decreasing at higher
occupancy, as each droplet is calculated separately). Red squares depict the same
hardware running Tensorflow on the CPU at 5.5Hz, or 4x faster (note that higher occu-
pancy does not increase computation time, as all features are calculated in parallel).
Black dots show that the Tensorflow model is unleashed even by a modest consumer
GPU, yielding 63.4Hz, or a 46x speed increase over the “classical” CPU code.

Results: Accuracy

•Excellent performance, despite operating with (intention-
ally) challenging charge sharing, see Fig. 8 and 9.

0 25 50 75 100 125
Photon energy (ADU)

0.0

0.5

1.0

1.5

2.0
H

is
to

gr
am

(M
co

un
ts

)
raw
1 pixel
2 pixels
3 pixels
droplet

Fig. 8: Performance of photon charge summing model: the thick red line shows a his-
togram of Frames2 (before); the thick black line depicts a histogram of Frames3 (after
charge summing). Note the radically improved spectrum (matching expected single
photon gain of 83 ADU). The individual features obtained by summation over 1, 2 or 3
pixels are indicated by thin lines. The system is dominated by 2 and 3 pixel events.

−0.5 0.0 0.5 1.0
x momentum (pixel pitch)

0

0.5

1

H
is

to
gr

am
(M

co
un

ts
)

Pixel 0 2 pixels
3 pixels

Fig. 9: Histogram of subpixel centroids in the x direction; after linearizarion, photon
position resolution in the order of µm is possible at low photon occupancy.

Conclusions

•Tensorflow enables orders of magnitude faster data pro-
cessing than standard CPU even with a consumer GPU
•Tensorflow code is compact, elegant, hardware agnostic,

and will continue to benefit from advances in ML
•Our novel models greatly reduce the cost of online analysis

and compression without photon loss at modern FELs and
inspire future deep learning models for radiation imaging.

References

[1] Martín Abadi et al. Software available from tensorflow.org. 2015.
[2] G. Blaj et al. In: SPIE Proceedings 9968 (2016), 99680J–99680J–10.

Acknowledgements

Use of the Linac Coherent Light Source (LCLS), SLAC National Accel-
erator Laboratory, is supported by the U.S. Department of Energy, Of-
fice of Science, Office of Basic Energy Sciences under Contract No.
DE-AC02-76SF00515.

New model

New model

New model

Breakthrough

Excellent


