
Can we use ML-based virtual diagnostics?

Two machine 
parameters scanned:

L1s phase: -21 to -27.8 deg

BC2 peak current: 1-7 kA

LCLS-II XTCAV

FACET-II XTCAV
Real diagnostic not always available:
• destructive, cannot use during user operations
• not sensitive in entire operating range
• slower update rate than desired
• moved to another location (e.g. cost constraints)

Still can have 
diagnostic 

prediction for 
user analysis and 
system control!

ML 
model

diagnostic 
measurement

diagnostic 
prediction

measurements 
that are always 

available

Measurement ML Prediction 
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MeasurementSimulation Complementary approach: ML model
Once trained, neural networks can execute quickly

Train on sparse sample from high-fidelity simulations

Train on measured data

+

Accelerator simulations can be very computationally intensive and don’t 
always match the machine well

Impedes use in offline start-to-end optimization and control development

Prohibits use as an online model (e.g. diagnostic + control applications)

Often takes much effort to replicate real machine behavior 

Start-to-end LCLS simulation 
10 hours on thousands of cores at the NERSC

1.7 km

Poor agreement between physics simulation and measured data
Can’t do a full parameter scan on machine (cost / time)

ML Model
Measured Data 
(smaller scan + 
passive data)

Simulation 
Data
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— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions

The subject of this virtual diagnostic work

to high energy line 
and IOTA
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mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

focusing magnets 
+ diagnostic line

Machine inputs
Predicted beam image + 
bulk properties

Can we pre-train in simulation and update with measured data?

Train on Simulation
+ Measurement

Train on
Simulation Only

Can we bridge the gap between our 
simulations and empirical machine behavior?

Initial results from study of injector 
systems look promising

à need to investigate strategies for doing
this routinely and at larger scale

Generate ML Model using Sparse Random Sample

ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)
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slow-to-execute

Small random 
sample of 

inputs
Physics 

Simulation

Output beam 
parameters

Train ML 
Surrogate Model

fast-to-execute

ML Model

ML Model

Genetic Algorithm 
(to optimize accelerator 

settings)

Physics 
Simulation

(a)  Run Optimizer on ML Model and Physics Simulation 
(b) Compare Resulting Pareto Fronts

Approach for Validating ML Model Performance Under Optimization

Genetic Algorithm 
(to optimize accelerator 

settings)
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Compare Resulting Pareto Fronts

Run Optimizer on ML Model and Physics Simulation

Physics Sim: 
~95k core hrs, 65k sims

Neural Network: 
~2 mins on a laptop
(5k sims for training)

NSGA-II for optimization:
200 generations
~350 individuals

Test Case:  Argonne Wakefield Accelerator Injector

OPAL simulation (PIC) :
3D space charge 
3D field maps
10k particles

5K random 
points for 
training

Input Variables

Solenoids

Gun 
Cavity Linac Cavity

Cathode
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Beam 
Propagation

Output Beam Parameters

𝛆x,y,z
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𝝙E

Required 13x 
fewer simulations
and had 106 faster 
execution in the 

optimization

Can We Speed Up Multi-Objective Optimization?

In some cases, optimization over simulation takes too long to converge
à validate Pareto front from neural network more directly

• Promising results on a common problem
• But, small parameter space (6 inputs, 7 outputs)

• Only deterministic processes (e.g. unlike FEL)

à How will this scale to larger + more complex sections?

Verify points 
through 

Simulation

Get Pareto points 
from Neural Net

Neural network gave a 
better approximation 

of the true Pareto 
front than the naïve GA 

on the simulation

Three Main Approaches for ML Modeling Effort

Genesis: 
~1000 cpu-sec

X. Ren

GAN (neural net):
~0.001 gpu-sec

• FEL process has some inherent random behavior 

• Want to generate many examples of FEL output with realistic statistical 
behavior  quickly à e.g. provide data sets for experiment planning

• Train generative adversarial network (GAN) on simulation data

Example inverse model: warm start for local optimizer

“ES” optimization algorithm can tune many 
parameters efficiently

- But can get stuck in local minima + can take 
awhile to converge (e.g. hundreds of iterations)

- Given target beam parameters, a neural network 
can provide suggested initial settings

Preliminary study at LCLS: 

- Scanned L1S phase and BC2 peak current

- Trained network to map phase space to settings

- Compared ES with/without warm start for 
extreme change in phase space

ML 
Model

Suggested 
initial 

settings

L1S phase
BC2 peak current

à ES alone unable to converge, but able to converge from settings suggested by NN

à Need to extend to wider range of parameters, look at performance over time

Local 
optimizer

• 5 inputs to neural network

- L1S and LIX amplitude, LIS phase

- BC1&2 peak current

• Reasonable performance predicting 
profiles and XTCAV images

• Key is varied data set from scan, and 
data preparation (e.g. ROI selection)

à Long-term prediction accuracy? (e.g. drift)  à How best to flag bad shots? (e.g. bad BC2 input)

à How best to handle region where detector not sensitive for FACET-II (fill in with simulation)?

FACET-II / LCLS study 

Can we handle statistical 
fluctuations realistically?

Wish list
• Train on simulation  à orders of magnitude speedup + enable use as online model
• Train on measurements à more closely match to real accelerator behavior
• Use as a virtual diagnostic à predict what an unavailable diagnostic would show
• Use for offline for experiment planning, design studies, and prototyping control algorithms
• Use online as an operational aid and in model-based control schemes

Challenges
• Flagging when to trust the model (e.g. bad shots)
• How best to retrain + strategies for deciding when to retrain
• How best to combine simulation and measured data
• Scaling to higher dimension + problem complexity 
• Efficiently handling different data types: 6D point clouds, images, scalars

Dedicated effort in 
AD to create fast-

executing, accurate 
accelerator models, 

and use these in 
control + 

optimization

Nonlinear systems with large parameter spaces
Variety of diagnostics, but limited in number and some not always available

Time-varying/ non-stationary behavior
On-demand changes in operational state

Wish List and Challenges


