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In many experiments, we can only measure
the state of the system indirectly. The signal
of interest is latent (hidden) behind a
transformation and obscured by noise. To
remove the transformation and obtain the
hidden signal, we directly model the
transformation and noise processes while
using a flexible function (Gaussian Process)
to represent the desired signal. Thus, unlike
many ML applications, where the latent
function is often useful only as a means for
inference, we obtain a meaningful latent
representation. Gaussian Processes (GP)
additionally allow us to rapidly and easily
characterize the uncertainty of our learned
signal. We demonstrate the advantages of
GPs over conventional methods for rapidly
collecting Resonant Inelastic X-ray Scattering
(RIXS) spectra using the chaotic SASE
source. Further we show that we can
separate a sum of linear and non-linear X-ray
signals, which is a critical problem in non-
linear X-ray science, where the non-linear
signal is measured with a strong linear
background.

Gaussian processes are an elegant
framework for solving latent-variable
problems occurring in spectroscopy
applications. We have demonstrated that
the ”stochastic” RIXS problem is more
sample-efficient than a mono in Gaussian
noise. Then we showed that GPs provide
a way to separate superpositions of linear
and nonlinear signals, enabling novel
nonlinear spectroscopies. In an upcoming
beamtime, we will test these methods on
experimental data. In the future, we plan
on using more complicated neural
network kernels with the GP framework
to enable transfer learning when studying
similar chemical compounds.
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In linear spectroscopies, the true signal (“latent space”) acts as a linear 

operator that converts a set of input vectors (left) to an output vectors (right). 

The output vectors are often detected in the presence of noise. The example 

here depicts the case of RIXS, measured on the top with a monochromatic light 

source and the bottom with a polychromatic spectrum. At an XFEL the “pink” 

SASE beam is much more intense than the filtered monochromatic beam, 

resulting in favorable counting statistics of the output signal.
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To handle both of these detection modalities in the Gaussian Process 

framework, a Gaussian Process prior was placed on the latent space (see What 

are GPs?) and weighed by either the pink SASE matrix or a mono-scanned 

SASE matrix. GPs are closed under affine transformations; this implies that the 

weighing by the SASE spectrum produces another GP (the fluorescence) that is 

then sampled in the presence of noise. Expert knowledge can be put into the 

covariance kernel to capture non-stationary behavior; alternatively, mild 

assumptions like twice-differentiability can be used. Because of the affine 

transformation property, the latent space may be convolved with some function, 

differentiated, or Fourier-transformed and still retain GP property. This allows 

the use of GPs in FT spectroscopies, or deconvolution applications.

Conclusions

We compared the sample-efficiency of the mono-scanned and pink-beam RIXS 

detection methods on a simulated spectrum detected in the presence of 

Gaussian noise. For small latent spaces, iid Gaussian noise, and under the 

assumption of repeated measurements, it is possible to efficiently run exact GP 

regression on a million SASE shots; the latent space is ~10k points. Shown 

here is the 16:1 peak SNR case for 100K shots. The hyperparameters of the 

regression problem were optimized using Adam. In all noise levels, the pink 

beam method achieves better MSE loss and is more sample-efficient. For 

larger latent spaces, compressive or inducing point methods must be used. 

Poisson noise is also possible, but much more expensive to implement. Shown 

below are slices through the output axis at the most intense peak for both the 

mono and pink-beam experiments. For the mono case, the traditional estimate 

involves binning each energy and averaging the values.
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Separation of Linear from Non-

linear Signals

A Gaussian Process (GP) is defined by 
the property that any finite set of 
samples from the process is distributed 
as a multivariate normal (MVN) 
distribution with some mean vector and 
covariance matrix. GPs therefore 
generalize MVNs to a continuous 
function space. Constraints on the basis 
functions are parameterized by the 
covariance kernel, which encode prior 
knowledge about the signal’s 
smoothness and other properties. Top 
left are two finite dimensional draws 
from a multi-variate normal with a 
square exponential (RBF) covariance. 
Bottom left shows how the basis 
functions can be constrained 
(conditioned upon) observations, shown 
in blue. Analytic manipulation of 
gaussians feasible and enables rapid 
uncertainty quantification, among other 
nice properties.

Data fitting cast as conditional 

probability estimation

What are GPs?

Gaussian Processes are non-parametric, i.e. their capacity grows 
proportionally with the data. The variational free energy approximation to 
GPs permits us to find a finite rank approximation that no longer grows in 
size with increased data. The objective function for VFE is shown below.

Variational Free Energy Approximations

With the VFE framework, GP methods can handle non-Gaussian likelihoods, 
scale to millions of data points, allow minibatch training and streaming 
data.

For a single SASE shot 

(left), the corresponding 

input to the two color 

response is shown at 

the right. 

At left we show a toy two-color 

spectrum. Top is the recovered signal 

in the presence of gaussian additive 

noise compared with the simulated 

ground truth (bottom). Above is a slice 

through the middle of the image, 

comparing the recovered signal to 

ground truth and showing the 

estimated uncertainty of the latent 

signal. Note that where the SASE 

intensity is small, the uncertainty grows 

rapidly.

One Color input Two Color Input

Multi-dimensional X-ray Spectroscopy: We consider here the case of 

regressing the two color response in the presence of linear signal 

corruption. Two color signals are those which depend quadratically on the 

SASE intensity at two energies (colors) of the incidence light. For two-color 

SASE, all possible color combinations need be considered. The above 

image on the right is the outer product of the spectrum on the left.

As we regress both the linear and non-

linear signals jointly, the linear 

absorptive signal can also be 

recovered. At the right, the recovered 

linear signal compared with ground 

truth is shown. As for the quadratic 

signal, the uncertainty of the recovered 

signal grows as the SASE intensity 

diminishes.


