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TID-AIR provides Systems & Components for SLAC & 
National / International Projects

Technology 
Innovation 
Directorate

• Provides engineering 
for SLAC directorates

• All SLAC developed 
LCLS/LCLS-II 
detectors

• HEP: ATLAS, CDMS, 
HPS, etc.

• LSST, CMB, Fermi …
• Non-SLAC Projects

LCLS 
Directorate

SSRL 
Directorate

Science 
Directorate

LCLS-II 
Project

LSST 
Project

Accelerator 
Directorate

Super 
CDMS 
Project Advanced 

Instrumentation 
for Research 

(AIR)
Division

Gunther Haller

LSST: World’s 
largest digital 
camera

Work for Others
EuXFEL, KEK, 

LANL, commercial 
companies incl. 
start-ups, etc.

● Strong team of 8 engineers with at least 10 years 
of experience in FPGA & firmware design

● Core firmware library and build system utilized by 
numerous laboratories
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LCLS-II: Data Reduction for 2D Detectors at 100kHz

• A typical LCLS camera at 120 Hz:
• ~500 MB/s raw data rate (~petabytes/year)

- 2.2 Mpixel, 2 Bytes/pixel

• LCLS-II: towards 100 kHz:
• Accelerator and detector development

underway
• ~500 GB/s data rate

- Current DAQ limitations:
• Data rate
• Storage

• Online data reduction:
• Detector corrections in real time
• Extract sparse photons (retaining full photon information) 

- 1-3 orders of magnitude better compression than raw images
• Save successful events

https://confluence.slac.stanford.edu/display/PSDMIn
ternal/2017-03-21+Background+subtraction
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Dark, Gain and Common Mode Correction in TF

• Dark and Gain Correction:

• Straightforward
• Easily extended to next 

generation auto 
gain-switching detectors 
at LCLS (not shown)

• Common Mode Correction:

• Relatively complex
• Robust at relatively high 

photon occupancy
- ~1% pixels with 0 photons

Blaj et al., Ultrafast Processing of Pixel Detector Data with Machine Learning Frameworks, SRI Proceedings, 2018. accepted
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“Droplet” Photon Charge Reconstruction in TF

• Weights

• Using CNNs to calculate total 
charge for sparse photons and 
allocate to appropriate pixel

• Several discrete weights
• easy quantization and 

increased FPGA speed

• Photon Charge Summing
• 8 lines of TF code

Blaj et al., Ultrafast Processing of Pixel Detector Data with Machine Learning Frameworks, SRI Proceedings, 2018. accepted
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Sparsification and Subpixel Resolution in TF

• Sparsification:

• straightforward (dedicated 
tf function)

• Subpixel resolution:
• Model:

• ~ 5 μm subpixel accuracy for 
ePix100

• Speed:

• $300 consumer GPU:
- ~45x faster than compiled 

parallel code on 4 CPUs

• Tensorflow:
- Ultracompact

• Entire data processing pipeline: 
~50 lines of code

Blaj et al., Ultrafast Processing of Pixel Detector Data with Machine 
Learning Frameworks, SRI Proceedings, 2018. accepted
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Machine Learning in TID\AIR

• Published: Machine Learning (ML) approach for 2D detector data streams
• 100x cost reduction compared with Psana and LCLS-II Data Reduction Pipeline
• G. Blaj, C. Chang, C. Kenney, Ultrafast processing of pixel detector data with machine 

learning frameworks, AIP Conf. Proc. 2054, 060077 (2019) https://doi.org/10.1063/1.5084708

• Proposed: LDRD to develop a distributed FPGA system to deploy this ML model (and any 
other model) for real time, full speed 100kHz LCLS-II detector data streams;

• 1,000x cost reduction projected for real time analysis and storage of every event in LCLS-II at 
full speed

• Based on existing, widely deployed FPGA Reconfigurable Cluster Element architecture 
developed at SLAC TID\AIR https://www.slac.stanford.edu/pubs/slacpubs/16000/slac-pub-16182.pdf

• G. Blaj, R. Herbst, J. Thayer, C. Chang
• NOT funded in FY 2019

• Currently training new generations of ML models for:
• Increased accuracy compared to standard Psana and the state of the art algorithms
• Easy deployment in future distributed FPGA systems

• Involved with Silicon Valley community working on FPGA ML compilers
• FPGA companies and users are developing single FPGA coprocessor frameworks (insufficient 

for demanding, real time, high throughput applications)
• No one is currently developing distributed FPGA systems and are highly interested (e.g., 

Xilinx, personal communication)

https://doi.org/10.1063/1.5084708
https://www.slac.stanford.edu/pubs/slacpubs/16000/slac-pub-16182.pdf
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Deploying ML To Hardware
Common Approaches

• Four categories of approaches to ML in FPGAs *
• Single processing engine

- Systolic array, processing each layer sequentially
• Homogeneous network of tightly coupled data processing units each 

processing a portion of the network data
- Software based processing with FPGA coprocessor

• Streaming architecture
- One processing engine per network layer
- Synchronous dataflow (SDF) model for mapping CNNs to FPGAs
- Networks can be deployed across multiple FPGAs

• Vector processor
- Instructions specific to accelerating the operations of convolutions
- Software driven processing with FPGA coprocessor

• Neurosynaptic processor
- Map digital neurons and their interconnecting weights
- ASIC based processing engines with configurable routing

* arXiv:1612.07119 [cs.CV]: “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference”
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Proposed Framework For Deploying 
Machine Learning In DAQ & Trigger Systems

•  Firmware framework for compiling ML networks into one or more FPGAs
• Clean interface between layers allows for inter-FPGA serialization over 

point to point or network based protocols
• VHDL based as opposed to Vivado HLS

• Current experience with Vivado HLS has exposed weaknesses  
• Working design flow for deploying neural networks in FPGA auto generated 

from Caffe (as an example) model:

Caffe
prototxt 

file

Train &
Test Data 

Sets

Caffe train and test software
(GPU or FPGA accelerated) 

Weight &
Bias Values

CNN
Config
Record
(VHDL)

Synthesis / Place & Route FPGA

VHDL config record 
derived directly from 
prototxt file (python)
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Proposed VHDL Based Framework
Proof Of Concept (2017)

• VHDL record driven generation of CNN synthesized into a pipelined 
classification engine]

• Deployed in TID-AIRs Firmware Library SURF
• https://github.com/slaclab/surf

• LeNet (single written decimal recognition) Example:

   constant CNN_LENET_C : CnnLayerConfigArray(5 downto 0) := (

      0 => genCnnConvLayer (strideX   => 1,  strideY   => 1, 
                            kernSizeX => 5,  kernSizeY => 5, 
                            filterCnt => 20, 
                            padX      => 0,  padY      => 0,
                            chanCnt   => 10, rectEn    => false),

      1 => genCnnPoolLayer (strideX   => 2, strideY   => 2, kernSizeX => 2, kernSizeY => 2),

      2 => genCnnConvLayer (strideX   => 1,  strideY   => 1, 
                            kernSizeX => 5,  kernSizeY => 5, 
                            filterCnt => 50, 
                            padX      => 0,  padY      => 0,
                            chanCnt   => 50, rectEn    => false),

      3 => genCnnPoolLayer (strideX   => 2, strideY   => 2, kernSizeX => 2, kernSizeY => 2),

      4 => genCnnFullLayer ( numOutputs => 500, chanCnt => 50, rectEn => true ),

      5 => genCnnFullLayer ( numOutputs => 10, chanCnt => 1, rectEn => false ));
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Existing Frameworks Under Investigation

• The following frameworks are being studied to see if they can be used or 
serve as a guide for a SLAC framework

• Xilinx: FINN
• Open Source
• Xilinx Vivado HLS
• Binarized Neural Networks (BNNs)
• https://github.com/Xilinx/FINN

• CERN, Columbia, Fermilan, MIT, UI, etc: hls4ml
• Open Source
• Xilinx Vivado HLS
• Demonstrated streaming inference with small networks
• https://hls-fpga-machine-learning.github.io/hls4ml/

• Imperial College London: fpgaConvNet
• Source Not Available
• Xilinx Vivado HLS
• http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html

https://github.com/Xilinx/FINN
https://hls-fpga-machine-learning.github.io/hls4ml/
http://cas.ee.ic.ac.uk/people/sv1310/fpgaConvNet.html
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Deploying Machine Learning In Hardware
Matching Deployment To Common DAQ Structures

Detector
Region

Detector
Region

Detector
Region

FPGA

Conv Conv

FPGA

Conv Conv

FPGA

Conv Conv

FPGA

Full

FPGA

Full

FPGA

Full

FPGA

Full
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Deploying Machine Learning In Hardware
Distributing The Layers Without Event Building

• Simple to deploy FPGA firmware for classification
• Each layer is pipelined, allowing higher frame rate
• Layers are flexible, can exist in different FPGAs

- Take advantage of 8-bit quantization for DSP density

Classification
Results To
Back End DAQ/Trigger

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Mid
DAQ

Deploying neural network structures in mid-level 
daq eliminates need to event build for 
classification purposes

• First few layers have minimal overlap 
of data (convolution)

• Inter-FPGA connections transport 
overlap data

- Inter-firmware RUDP
- Shared hybrid memory cube (HMC)

• Possible to design networks which 
minimize or eliminate overlaps

Front
End

Front
End

Front
End

Front
End
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Commercial FPGA Hardware Examples

Xilinx KCU1500 co-processor
○ XCKU115 FPGA
○ 2 QSFP optical modules
○ 16GB DDR
○ Amazon AWS

DAQ R&D 2017

Xilinx Virtex UltraScale+ VCU1525
○ XCVU9P FPGA
○ 2 QSFP optical modules
○ 64GB DDR



TID-AIR

15

Custom Hardware
SLAC RCE Platform

96 port 40G capable switch.
Support 10Gbps or 40Gps to DPMs
Support 120Gbps front connection
Full mesh ATCA backplane switching

8 Zynq7045 FPGAs
2 per DPM daughter card
1 Zynq 7030 FPGA
DTM daughter card

Networked interconnected FPGA 
modules provides excellent platform 
for both neural networks and pooled
FPGA processing.

Possible to replace existing
Zynq FPGAs with larger
Ultrascale + FPGAs

15
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Custom Hardware
SLAC AMC Common Platform

LCLS-1 LLRF Down Convert 

ATCA AMC
Carrier Card
Supporting 2
Analog AMCs

ATCA provides the space, power 
& cooling required for LCLS-2!

10/40Gbps Ethernet
Backplane

● Ethernet management interface

● Full ARP, ICMP, DHCP, IPV4, 
UDP, RUDP in firmware

● RUDP - Reliable UDP 
communications layers, “TCP 
like” with message level 
re-transmission & flow control

Large FPGA coupled with 
analog application cards

Basis for LCLS2 High 
Performance Systems (HPS) 
Controls

Base platform for SMURF TES 
sensor RF readout
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The End


