
Embedded FPGAs for HEP
Reconfigurable Digital Logic in 28nm CMOS for
Smart Pixel Readout

Julia Gonski, Kenny Jia
SLAC National Accelerator Laboratory
July 29, 2024

1 / 19



Outline

• Motivation and Physics Context
• eFPGA Technology
• Description of the Dataset
• Our strategy

– Proof of Concept (resource constrained)
• Software model
• High Level Synthesis

– High Performance Model
• Software model
• High Level Synthesis

• Future Plan

2 / 19



Motivation and Physics Context

• Collider Pixel Detectors (ITk):
– each pixel is a silicon sensor with ASIC
– O(100) million pixels, Pixel size O(µm2)
– Petabyte per second data rate (more for future colliders!)

Challenge: how to effectively reduce the data volume transmitted
off-detector while preserving useful physics information as much as
possible?

3 / 19



Goal of R&D

Lossy data compression with on-chip ML algorithm enables
extraction of key physics info while minimizing data rate to be
transmitted off-detector.

4 / 19



Embedded FPGAs (eFPGAs)
Basic idea is that you can put reconfigurable logic in your ASIC
design.

• Full reconfigurability: can be configured just like a regular
FPGA

• Power Efficiency: ASIC implementation means lower power
than FPGA (“best of both worlds")

• Development Time: “plug-and-play" FPGA fabric into ASIC
• Cost: no need for costly engineer hours or licenses to design

an ML chip

Also in use as hardware accelerators
See Larry Ruckman’s (CPAD 2023) talk for more

5 / 19

https://indico.slac.stanford.edu/event/8288/contributions/7652/


eFPGA Design

Original patents for several popular eFPGA architectures have
expired. In 2021, University of Manchester has started an
open-source project called “FABulous" to design ASICs with
eFPGA fabric. Open source design framework reduces cost and
lowers barrier to entry for institutions to participate in
microelectronics design.

6 / 19

https://fabulous.readthedocs.io/en/latest/


eFPGA Development at SLAC

• SLAC’s Technology Innovation Directorate (TID)
demonstrated an eFPGA design using FABulous framework in
a 130nm CMOS Multi-Process Wafer (v0)

• Subsequently designed a second “proof-of-concept" eFPGA in
28nm CMOS in 2023 (v1), 1mm × 1mm

7 / 19



How do we do data reduction here?

Simplest way: train ML model to classify high pT from low pT
tracks: reject fraction of data at source, save on data rate
Fancier ways: regression of cluster kinematic variables;
compression via autoencoder and save only data in latent space.

• Starting from past smart pixel work! 2310.02474, 2312.11676

8 / 19

https://arxiv.org/abs/2310.02474
https://arxiv.org/abs/2312.11676


Description of the Dataset

We used the Smart Pixel1 Dataset, which are pixel clusters
produced by charged particles (pions) with real kinematics from
CMS Run 2.

• Input:
– 0.5 Millions of 20*13*21 (time × y position × X position) 2D

"video" + y-local (y0).
• Target:

– 13 truth properties: x-entry, y-entry, z-entry, n_x, n_y, n_z,
number_eh_pairs, pt, cotAlpha, cotBeta, y-midplane,
x-midplane.

1https://zenodo.org/records/7331128
9 / 19

https://zenodo.org/records/7331128


Description of the Dataset

10 / 19



Our strategy

We wanted to achieve a proof of concept (PoC) with the current
28nm eFPGA chip first, then scale up to a more realistic logical
capacity with a high-performance model and tape out a new v2
eFPGA.

1 For the PoC case: main challenge is the extremely low logical
capacity. Number of LUTs is at the scale of 1/1000 in
compare to regular commercial FPGA like Xilinx Virtex 7 (400
v.s. 400k-2M).

2 For the high performance case: explore power of
reconfigurability with multiple algorithms (classification,
dimension reduction, and regression) in codesign with eFPGA
engineer team

11 / 19



Workflow

Four implementation steps:
• Software ML model: (Q)Keras, scikit-learn, XGBoost...
• C++ code generation: HLS4ML, SNL, conifer, fwXmachina...
• Synthesis and CSIM/COSIM: Catapult HLS, Intel HLS...
• Testing on chip

12 / 19



Step 1: Proof of concept

• Highly constrained (unrealistic) resources:
– LUTs: 448
– MUX2: 224
– MUX4: 112
– MUX8: 56
– DSP_Slice: 4
– Global_Clock: 1

• To achieve PoC, we simplify the model at every single level.
– Input: 1D array with 14 features: 13 values summing over time

and x_pos, with y0
– Output: probability score of whether track pT > 2 GeV.

13 / 19



PoP software level: BDT

• Our first shot was looking for simple fully connected layers.
Even with a few nodes, the LUTs needed exceeds far more
than what we have on the current chip.

• Second attempt is Boosted Decision Tree. It is fast to train,
powerful, and resource-efficient!

14 / 19



PoC results

Translation from python to C/C++ done with conifer2.
Signal Efficiency:96.36% Background Rejections:5.76%
Not meant to be a realistic physics algorithm! Constrained
resources mean that all the PoC can offer is a confirmation of the
chip simulation & eFGPA reconfigurability.
Use only 294 LUTs and nothing else (BRAM_18K, DSP, FF,
URAM). Latency under 25ns.
Successfully configured PoC model on eFPGA chip, matching
perfectly to expected output!
Documented in SLAC eFPGA paper: 2404.17701 submitted
to JINST

2https://github.com/thesps/conifer
15 / 19

https://arxiv.org/abs/2404.17701


Conclusions & Next Steps

• eFPGAs proving to be an interesting technology for
intelligence and reconfigurability at-source in collider
experiments

– SLAC eFPGA paper submitted to JINST: 2404.17701
– Discussing a variety of other applications: waveform

classification eg. CalVision, straw tracker readout, ...
• Next steps

– Exploration of high performance models
(regression/dimensional reduction; new Smart Pixel datasets?)

– Codesign and tape out of new v2 eFPGA
– Develop FABulous for collider applications: Triple Modular

Redundancy(TMR) for radiation hardness test at test beam,
cryogenics, ...

• Many thanks to Smart Pixel team for the dataset & help
along the way!

16 / 19

https://arxiv.org/abs/2404.17701


Backup

17 / 19



Power

18 / 19



PoP software level

An interesting finding: LUTs need depends more on number of
estimators than the max depth.
BDT config:
’loss’: ’log_loss’,
’learning_rate’: 0.1,
’n_estimators’: 1,
’subsample’: 1.0,
’criterion’: ’friedman_mse’,
’min_samples_split’: 5000,
’min_samples_leaf’: 2500,
’max_depth’: 5,
’max_features’: None

19 / 19


