Updates on the Princeton Axion Search (PXS)

Saptarshi Chaudhuri

August 6, 2024

DMRadio Collaboration Meeting

Team Members

Princeton: Joelle-Marie Begin, Saptarshi Chaudhuri, Roman Kolevatov, Nate Otto, Lyman Page, Joe Wiedemann DOE PPPL: Siwei Chen, Yi Li, Yuhu Zhai Caltech/JPL: Peter Day, Farzad Faramarzi, Jonas Zmuidzinas

PXS: a 0.8-2.1 µeV QCD axion search

 Addressing critical transitional frequency range between DMRadio program and traditional cavity haloscopes (ADMX, CAPP, HAYSTAC...)

Funded by Simons Foundation

Together, Math and Science Foundations Fund 'Tabletop' Physics That Could Transform Our Understanding of the Universe

News ~

December 11, 2023

Ultra-powerful magnet facility launches at PPPL

By Raphael Rosen, Princeton Plasma Physics Laboratory on Feb. 7, 2024, 1:14 p.m.

A thank you to all of the students and postdoc!

<u>Postdoc</u>

Roman Kolevatov

PhD Thesis Students

- Joelle-Marie Begin
- Nate Otto
- Joe Wiedemann

Senior Thesis Students

- Haaris Mian
- Bryan Oller

Experimental Projects

- Rahul Balaji
- Andrei Kasevitch
- Dongyeob Kim
- Bowei Liu
- Nicolas Patino
- Damiano Tietto
- Dmitrii Trunin
- Zack Gelles
- Victor Ivo
- Ilia Kochergin
- Anna Biggs
- Maxim Borovkov
- Carolina Figueiredo
- Zihan Zhou
- Josef Zimmerman

Summer Undergraduates

- Nicholas Callan
- Jessica Fox
- Nathaniel Bruss
- Oyu Enkhbold
- Vivian Huang
- Nastassia Patnaik
- Pranav Vadapalli
- Deniz Erdag
- Nicky He
- Rebecka Maehring
- Ryan Marin
- Paolo Montoya

New axion search magnet w/ PPPL

- Many magnets use NbTi conductor, immersed in liquid helium
- Conduction-cooled Nb3Sn magnet \rightarrow no liquid helium, higher fields

Magnet design: Y. Zhai, PPPL

Bucking coil analysis: Z. Zhou (experimental project)

Validation efforts underway with test magnet

- Build 5 Tesla coil at 30% length scale to elucidate interfaces, validate thermal and mechanical performance, field profile and shielding
- Test cryostat constructed in spring

Cryostat undergoing insulation blanketing

Joelle and Lyman mounting cryostat to frame

Joints and copper current leads validated

- Verified low resistance in conductor joint tests at PPPL
- Ran 650 amps to 40K stage through copper leads

High-current vacuum feedthrough

Nitrogen purge system for preventing moisture

- Run HTS leads to 4K, fabricate pulse tube shielding
- Validation of conduction cooling mechanism at PPPL
- Delivery of model coil in the autumn

Roman working on current lead assembly

Next steps

Joe and Lyman installing HTS leads

New amplifier technology desirable

- dc SQUIDs and resonator-based Josephson parametric amplifiers challenging to use at 200-500 MHz
- Possible solution in collaboration with P.K. Day and J. Zmuidzinas, Caltech/JPL: traveling-wave parametric amplifier (TWPA) utilizing kinetic inductance nonlinearity
 - Broadband amplification
 - Demonstrated system noise performance of few times SQL at higher frequencies (~4-7 GHz)
 - See: Eom et al, Nature Physics, 2012; S. Chaudhuri et al, APL, 2017; S. Shu, et al, Phys. Rev. Research, 2021; Malnou, Phys. Rev. X Quantum, 2021; F. Faramarzi, et al, arxiv: 2402.11751

Low-frequency KI-TWPA demonstrated down to 400

- Capacitively shunted TiN inverted microstrip transmission line <.01c velocity
- Pump power of 300 nW, factor of x1000 improvement over previous CPW architecture
- Signal processing at image tone ~3 GHz to reduce complexity
- Initial system noise measurements < 3 quanta, presently improving noise calibration and auxiliary microwave components

Next steps

- Will characterize lower-frequency TWPA. Initial measurement: ~25 dB over 100-700 MHz
- Studying feasibility of squeezing with kinetic inductance TWPAs
- DR to study noise and device physics, He3 cryostat to study full readout chain

Infrastructure under development for readout

- DR commissioned in late May (<7 mK), DC wiring installed, detailed studies of still-MXC load curves
- DR RF wiring and component installation over August and September
- Commissioning of He3/He4 fridge over the next month

Resonator design to probe transitional range

• Based on cylindrical barrel of 70cm diameter, 102 cm height

Resonator design to probe transitional range

- Producing resonances below TE₁₁₁ studied for DMRadio-m³
- See AlShirawi, et al, arxiv: 2302.14084 (2023)!

 PXS approach below 330 MHz: Combine traditional tuning rod infrastructure with concepts from AlShirawi, et al, to produce modes that efficiently couple to axion. Simulation and tuning specification in progress.

Room temperature test cavity

Al 1100 rolled and welded cylinder with 6061 endcaps

- TM010 frequency of 327.7 MHz measured, with Q of 48k
- Frequency spot on, within 10% of expected Q
- Bead pull measurements started over the past week, analyzing background variation

Nate removes bag of plastic endcaps from top of cavity

Cavity characterization- temperature variation?

Next steps

- Continue with bead pull measurements
- Short-term goal: map mode magnetic field by differencing dielectric and metallic beads
- Select and fabricate first tuning rod (380-500 MHz)
- Continue with investigation of lower frequencies

Joint R&D with the DMRadio collaboration

- Working together to realize searches at lower, sub-µeV axion masses
- Particular focus on resonators and readouts

Al 1100 parallel-plate capacitor

Tensioned NbTi wire on 1100/alumina frame

Roman Kolevatov closing up LC resonator apparatus

Q vs T dependence

State-of-the-art new record value Q~710,000 at 301 kHz!

Nagahama et. al 2016: Q of 500,000 @ 896 kHz and 250,000 @ 948 kHz (order of magnitude smaller volume)

Sapphire grooving for next coil

- Suspect Q limitation due to loss in alumina+ formvar-coated wire
- Next coil will be sapphire rod wound with PTFE or bare NbTi wire

PXS initial science projections and outlook

- 0.8-2.1 μeV (200-500 MHz) QCD axion search
- 5T, 500L (78.7cm bore) magnet in collaboration with PPPL
- Q=100,000-200,000 copper resonator cooled to 40mK
- Readout noise: 15x quantum limit (7.5 noise quanta)

Fully operational in 2027. DFSZ sensitivity with 200 days of integration time.

Questions?

Mode map

More photos

