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Intro to SQL



Current Response

Thermal noise In resonator

* Aresonator with resonant frequency (wy)
n and temperature (T) will be occupied by
Nin Photons Ny, NOise quanta:

1
Th = “hep/(keT) — 1

also nyy, Photons
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* The SQL arises because the two quadrature operators of the
electromagnetic signal are canonically conjugate.

* Precisely on resonance, the Standard Quantum Limit on noise
temperature of a quantum sensor measuring a resonator is:

1 1
kgT,, = hwp(ny, + E + E)
5 Quantum Zero-point
5 noise of the noise of the
3 sensor resonator
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* The axion sighal frequency is unknown and will generally be
detuned from the detector resonance frequency.

* For large detuning, the SQL for the noise temperature of a sensor
Is set by the photon loss rate (bandwidth) of the resonance it
couplesto:

kgT,, = hw(ngy, + 1+ Aw/y)

Detuning
Aw = w — wy

Current Response

Resonator bandwidth
— Y = wp/Q
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* How far can the axion sighal be detuned from the resonance
without unduly degrading the SNR?

* For an SQL amplifier and larger detuning:

kgT,, = hw(ng, + 1+ Aw/y)

* The maximum detuning at which the total noise temperature is
degraded by no more than a factor of two (in power):

Awsqr, = y(Nen + 1)



Why do we care about visibility bandwidth?

frequency
(axion mass)

* The same frequency span can be covered in fewer tuning steps
with a wider visibility bandwidth. Increased scan rate!
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RF Quantum Upconverters

 Continuous-variables quantum sensor to measure axion-induced
signals in electromagnetic resonators.

* Phase-preserving measurements (measuring both quadratures)
can reach SQL.

* Dramatically better sensitivity than is possible with existing dc
SQUIDs.

* Single-quadrature measurement can perform better than SQL
using quantum backaction-evasion (BAE) protocols.



RQU circuit model

* Tunable inductance modifies electrical length of GHz resonator.

* Analogous to optomechanics-three-wave mixing upconverts
signhal mode to sidebands around microwave drive tone.
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RQU readout chain (simplified!)

Amplification by
/» HEMT / JPA

® Signal 1s downmixed and
® digitized/processed at m,

Microwave drive
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RQU Design and Testing



Aluminum RQU fabrication

* Fab process is fast and flexible, enabling a range of designs.

Josephson Junction tunable inductance designs Microwave components
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Packaging and readout

30 mK ADR base stage

Readout

tone OUT

Microwave

drive IN

Low-frequency

flux signal IN

Circulator Multi-layer magnetic shielding



Demonstration of upconversion

We have shown frequency upconversion

of signals across relevant DMRadio range/,é =
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Demonstration of phase-sensitive gain

* An amplitude-modulated readout with an envelope that matches the

MHz flux signal selectively amplifies one quadrature.
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Outlook and Next Steps



Device design and fab are iterative processes

* Fast turnaround and testing means we
can dialin processes and make changes
to the designs.

* Varying number of junctions, relative
sizes, flux loop geometry, etc.

* Working on improvements to grounding,
ability to inject flux from off-chip, and
more.




Characterizing and improving readout chain

* Currently working on full-
readout-chain noise analysis to
determine sensitivity and limits
of the current devices.

* Additional microwave hardware
(8.5 GHz Lock-in) adds
flexibility and expands
measurement capabilities.
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Adding resonator to input

* Next testing steps include
adding a MHz test
resonator to the RQU
Input.




That’s all! Thank you to the RQU team!
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