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Gravitational Wave Signal
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Gravitational Wave Signal
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Experimental Setup
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Induced B-field
Pickup structure
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1. Directional search
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Figure-8 loop 90°

Figure-8 loop 0°

Figure-8 loop 45°
GW calibration

Calibration

Axion ring pickup

Axion calibration 
loop

z-axis

The pickup structures and calibration 
structures that are used in the GW axion run
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Calibration an axion-GW run

– To prove we can run a simultaneous axion and GW run, we must 
demonstrate that the GW search and the axion search can be 
calibrated independently 

– We have four calibrations:

1. GW pickup calibrated with GW signal (GW end-to-end)

2. Axion pickup calibrated with axion signal (axion end-to-end)

3. GW pickup calibrated with axion signal (GW cross calibration)

4. Axion pickup calibrated with GW signal (axion cross calibration)
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GW pickup: axion signal cross calibration
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GW pickup SQUID 2
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GW pickup: GW signal end-to-end calibration
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Calibration on GW pickup
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Axion to GW mutual inductance
We expect (to first order) zero mutual 
inductance between the figure-8 and the 
circle

However, we see a high amount of correlation 
between the signals
• Somewhere in our system there was an 

unknown high amount of parasitic 
induction

• Pickups or twisted pairs
• SQUIDs
• Wires
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GW pickup: axion signal cross calibration
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Parasitic inductance run
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Disconnected cross calibration
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Connected cross calibration
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Inductance run results
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Inductance schema of all possible 
calibration inductances
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Changes made

Loops were reduced
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Configuration 1 Configuration 2



Changes made

GW calibration loop moved closer to GW pickup
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5 cm

1 cm

Configuration 1 Configuration 2

Increased our mutual 
inductance by 2 orders of 

magnitude



Changes made

Twisted pairs distanced

22Configuration 1 Configuration 2



Experimental Setup
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GW figure-8 pickup

GW figure-8 
calibration

Axion ring pickup

Axion calibration 
loop

z-axis

The pickup structures and calibration 
structures that are used in the GW axion run

The z-component of the 
magnetic field resulting 
from an axion effective 

current

The z-component of the 
magnetic field resulting 

from a GW effective 
current



GW pickup calibration results from 
configurations 1 & 2
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Signals and Data
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ABRA-GW Goals

1. Maintain sensitivity to axions

2. Achieve the projected GW sensitivity

3. Perform pathfinder analysis
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Gravitation Waves
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Proposed by Einstein, moving masses create propagating 
oscillations in the gravitational field

First detected by LIGO/VIRGO in 2016 (2017 Nobel Prize)

 F < 10 kHz  ⟶  Mergers of black holes and neutron stars 

New physics > 10 kHz such as:

– Primordial blackhole binaries
– Superradiance
– Cosmology



Primordial Black Hole Merger Templates

Using the ripple code base to create the wave-forms of the 
merger
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Template Transformation
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Strain Current Magnetic 
Field

FluxPickupVoltage 
out

COMSOL

Calibration

Need to transform the template into the detector frame



Template Transformation

Need to transform the template into the detector frame

COMSOL:

Φ"#$%&" 𝑓 = 	𝐡'/× 𝜔 	×	𝜔*	×	Simulation	Results

Calibration:

V+,- 𝑓 = 𝒯(𝑓).!"#$%!→0&'(Φ"#$%&"(𝑓)
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COMSOL Flux Simulation

We input the equations for effective 
current using equations from 
2306.03125 for the effective current 
in a toroidal magnet with extensions 
to finite height by Sung Mook Lee
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COMSOL Flux Simulation

Then we measure the flux 
generated from the induced 
magnetic field in the figure-8 area
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Strain Polarizations on the Figure-8
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The two polarizations of 
strain are simulated 
separately over the 
incoming angle of the 
signal



Calibration
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Current in injected into the 
calibration loops and the response 
is measured

𝑉+,-
𝑉1#2

=
𝑉+,-
𝑉3456,

𝑉3456,
𝑉.)

𝑉.)

𝐼-
𝐼-
𝑉1#2



Primordial Black Hole Merger Templates
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Raw Data
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Raw Data

Data off the digitizer had a bi-
modal distribution with spikes.

Autocorrelation 
5 MHz signal is apparent in 
the data
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Filtering

After using a Butterworth filter 
(3 MHz to 10 kHz) distribution 
looks Gaussian

The Anderson-Darling test 
failed
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Background Periodic 
Signal
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A 13 kHz background signal 
remained in the data



Sensitivity and Stability
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Axion Noise Floor
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Noise-Equivalent Strain

The noise-equivalent strain 
sets the detector sensitivity 
to be able to compare to 
other detectors in the field 

42

MAGO 2.0 https://arxiv.org/pdf/2303.01518.pdf



Noise-Equivalent Strain

Treat all the noise as if it originated on the detector input 𝑆7(𝑓)

𝑆7 𝑓 = <𝑛 𝑓 * Δ	𝑓 = 2	 @ℱ8 𝑓

𝒯9: 𝑓 *
.!"#$%!→0&'(

@ℱ0&'( 𝑓 = @ℱ.!"#$%! 𝑓

@ℱ.!"#$%! 𝑓 	× 𝐡'/× 𝜔 	×	𝜔*	×	Simulation	Results
9*
= @ℱ8 𝑓
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Noise-Equivalent Strain
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Theoretical calculation 
performed by Nicholas Rodd



Searching for the Merger 
Signal

45



Merger Search

Vary the amplitude of the signal 
à distance and direction of the signal
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Gaussian Process

Since we have a non-Gaussian background, we cannot use a 
traditional matched filter

A GP works by fitting multiple distributions to data with a joint 
Gaussian distribution 

 

𝑓(𝑥)
𝑓(𝑥:)
⋮

𝑓(𝑥7)

~𝒩 𝜇,

	𝑘 𝑥, 𝑥 	𝑘 𝑥, 𝑥: 	 ⋯ 𝑘 𝑥, 𝑥7
𝑘(𝑥:, 𝑥)

⋮
𝑘 𝑥:, 𝑥: ⋯

⋮
𝑘(𝑥:, 𝑥7)

⋮
𝑘(𝑥7 , 𝑥) 𝑘(𝑥7 , 𝑥:) ⋯ 𝑘(𝑥7 , 𝑥7)

47



Gaussian Process

We choose a covariance matrix (also called a kernel)

𝐾 𝒙; , 𝒙< = Cov 𝑓 𝒙; , 𝑓 𝒙;

For our periodic background we choose a periodic kernel

𝐾(𝒙; , 𝒙<) 	= exp −Γsin*
𝜋
𝑃

𝒙; − 𝒙<
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Gaussian Process

The marginalized likelihood for the residuals is given by

𝑝(𝒓|𝑡, 𝐴) 	= 	𝑁(𝑚(𝑡), 𝐾)

We can use the marginalized log-likelihood to construct the test 
statistic

log 𝑝 𝒓 𝑡, 𝐴 = −
1
2
𝒓= 	𝐾9:𝒓 + 	log det 𝐾 + 𝑛	log 2𝜋

The test statistic is
TS = −2	log 𝑝 𝒓 𝑡, 𝐴
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Signal Injection
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Signal Injection

Varying the injection 
amplitude over one 
segment

Constant amplitude 
with varying data 
segments



Merger Exclusion

Time step ∆𝑡 = 0.2	𝜇s

𝑁">?$@11 = ⁄𝑇 ∆𝑡 	− ⁄𝑡A@B"CDA@ ∆𝑡 + 1

𝑁">?$@11	~	3	×	10:*

Too many steps to process, need alternate approach

52



Future Searches at High-Frequency

Transient searches: PBH binaries

– Online trigger 

Stochastic signals: Astrophysical backgrounds and cosmological 
signals

– Stationary 

– Gaussian distributed

– Isotropic

– Unpolarized 
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Future Searches: Stochastic signals
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For one detector:

For two detectors:



ABRA-GW + DMRadio 50 L (in an 
axion configuration)

55

Future Searches: Stochastic signals

Phys. Rev. Lett. 129, 041101 – Published 20 
July 2022: Valerie Domcke, Camilo Garcia-Cely, 
and Nicholas L. Rodd



Conclusions & Takeaways

– Axions and gravitational waves can both be searched for with  
electromagnetism 

– We modified a lumped-element axion detector to 
simultaneously detect axions and high-frequency gravitational 
waves

– Future searches can look for more allusive signals with multiple 
detectors 
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Backup Slides
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Primordial Black Holes
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PBHs were formed before matter domination from over-densities 
in the plasma

𝛿 > 𝛿E =	𝑐F*

Stellar BHs are stellar remnants 
à BHs formed after matter-radiation equality must be larger 
than 3 M⊙



Primordial Black Holes
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Early creation results:

– PBHs could be tiny enough to 
be DM as a result of Hawking 
radiation

– PBHs could also be massive, 
after continuously accreting 
mass over their lifetime

DOI: 10.48550/arXiv.2311.05942
DOI: 10.5281/zenodo.3538999



Primordial Black Hole Binaries

In-spiral   Merger       Ringdown
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Primordial Black Hole Binaries

Primordial blackhole in-spiral coherence time:

e.g., for 𝑓 =	10 kHz and τ =	2 days we would be looking for 10-6 
M⊙ PBHs
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Axion Signal
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Background

Axion Signal

Simulated Data Standard Halo Model

∆𝑓/𝑓~1/𝜈* ≈ 10+,

Axion Signal zoom-in



Templates

Testing different mass 
combinations to see 
which produces the 
strongest signal, also 
cross-correlation tests 
with white noise
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Signal to noise ratio

𝑆𝑁𝑅 = 	𝑔GHH 𝜌IJ𝒢𝑉𝐵KGL
𝑀;7

𝐿=
𝜏𝑡 :/M

𝑆..:/*
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Signal to noise ratio
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Axion to photon coupling 
constant Local dark matter density



Signal to noise ratio

𝑆𝑁𝑅 = 	𝑔GHH 𝜌IJ𝒢𝑉𝐵KGL
𝑀;7

𝐿=
𝜏𝑡 :/M

𝑆..:/*

66

Geometric factor



Signal to noise ratio
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Magnetic field 
volume

Maximum value of 
the magnetic field



Signal to noise ratio
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Inductive coupling 
of the SQUIDs



Signal to noise ratio
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Inductive coupling to the 
readout circuit



Signal to noise ratio
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Axion coherence time and 
the integration time



Signal to noise ratio
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Flux noise level/ noise on 
our SQUIDs



Signal to noise ratio
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Coupling of SQUIDS to 
axion signal through the 
pickup structure 


