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Experimental Setup

Top-down view

Pickup structure
The z-component of the

magnetic field resulting
from an axion effective
current

Induced B-field

o
K&\\]

The z-component of the
magnetic field resulting
from a GW effective
current

1T B-field
Jerr




1. Directional search
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Calibration an axion-GW run

— To prove we can run a simultaneous axion and GW run, we must
demonstrate that the GW search and the axion search can be
calibrated independently

We have four calibrations:

. GW pickup calibrated with GW signal (GW end-to-end)

. Axion pickup calibrated with axion signal (axion end-to-end)

. GW pickup calibrated with axion signal (GW cross calibration)

> W NN -

. Axion pickup calibrated with GW signal (axion cross calibration)



GW pickup: axion signal cross calibration
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GW pickup: GW signal end-to-end calibration
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Calibration on GW pickup
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Axion to GW mutual inductance

We expect (to first order) zero mutual
inductance between the figure-8 and the
circle

However, we see a high amount of correlation
between the signals

» Somewhere in our system there was an
unknown high amount of parasitic
induction

* Pickups or twisted pairs

« SQUIDs
e Wires

X
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GW pickup: axion signal cross calibration
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Parasitic inductance run
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Disconnected cross calibration

Axion pickup

Inside Magnet

SQUIDs Wires
T TN RN EEEEEE NN RN R RN RN NN NN R RN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
- - L
/
II Meal1 s2ui o Mcal1_siwire
AN L
N \ ’
MSQUID_l_Z* ) ‘\ ) Ms1wire_sawire
\ .
/ L, / Measuring
¢ re——— ;
MC Plate Up through
the fridge

*likely very small

Calibration
port 1

SQUID 1

SQUID 2

15



Connected cross calibration

*likely very small
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Inductance

run results

Axion Pickup (connected)

Axion Signal Calibration (not connected)
GW Signal Calibration (connected)
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Inductance schema of all possible
calibration inductances

*likely very small
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Inductance schema of all possible
calibration inductances

*likely very small

Loops SQUIDs Wires

Axion calibration I O |— - = N — )
I 1 /
\ \
I /

\ \
\V/ . ! U I\/Icall Slwire
M [ st 1 1Meain_sawire, =
lvla 14- - —
' , I 7 —

Axion pickup CJGWP 4 . —= N 1 Y

| 'y . twisty / \\ N I LI/ \

| / \ I \ 1

\
I} IvlSlwire_SZwire

*
Iv'ac_GWc’I!I\ ! Map_GWp *\ l' | |Vltwist 1 I\/ISQUID_l_Z I\/Ical_1_2|

v
I II |’ ,/ I ‘I’ /// ,/ I| l' \\ 9 /
4 —_ — \/ 1 1
GW pickup - M p-\G\’Vl? M\ Miwist, i L AN ’
Ia ‘ ‘\ \ I Jr\ \\ ‘\ ‘ I\/|51W|re caI2\
I \\ \ ) MiWr  GWc ‘\ /l Miwist \\ \\ ! MSZere cal2
\ }( // ‘\ L/ \ \ !
GW calibrationl ' /’ '— - — )
e e
. Up through
Inside Magnet MC Plate P . &
the fridge

Calibration
port 1

SQUID 1

SQUID 2

Calibration
port 2

19



Changes made

Loops were reduced

.

Coniguration 1

Configuration 2
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Changes made
GW calibration loop moved closer to GW pickup

Increased our mutual

inductance by 2 orders of
magnitude

5cm :

:[1cm

O

Configuration 1, : Configuration 2
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Changes made

Twisted pairs distanced

Cohfiguration 1



Experimental Setup
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GW pickup calibration results from

configurations 1 & 2
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Signals and Data



ABRA-GW Goals

1. Maintain sensitivity to axions
2. Achieve the projected GW sensitivity
3. Perform pathfinder analysis
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Gravitation Waves

Proposed by Einstein, moving masses create propagating
oscillations in the gravitational field

First detected by LIGO/VIRGO in 2016 (2017 Nobel Prize)

- < 10 kHz — Mergers of black holes and neutron stars

New physics > 10 kHz such as:

— Primordial blackhole binaries
— Superradiance
— Cosmology
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Primordial Black Hole Merger Templates

Using the ripple code base to create the wave-forms of the
merger

Merger parameter value
M; 0.01 Mg
M, 0.01 Mg
Dimensionless spin 0
Time of coalescence 1 ms
Distance to source 3.24 x 1e-23 Mpc (1 m)
Inclination 0




Template Transtormation

Need to transform the template into the detector frame

-< -

Calibration




Template Transtormation

Need to transform the template into the detector frame

COMSOL:

Dpickup () = h*t/%(w) X w? x Simulation Results
Calibration:

Vapc (f )=T (f )(Dpickup_)VADC q)pickup (f)
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COMSOL Flux Simulation

We input the equations for effective
current using equations from
2306.03125 for the effective current
in a toroidal magnet with extensions
to finite height by Sung Mook Lee
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COMSOL Flux Simulation

magnetic field in the figure-8 area

generated from the induced
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Strain Polarizations on the Figure-8

figure-8 h+ only flux figure-8 hx only flux

The two polarizations of
strain are simulated
separately over the
incoming angle of the
signal
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calibration loops and the response
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Primordial Black Hole Merger Templates
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Raw Data



Raw Data

Data off the digitizer had a bi-
modal distribution with spikes.

Autocorrelation

5 MHz signal is apparent in
the data




Filtering

After using a Butterworth filter
(3 MHz to 10 kHz) distribution
looks Gaussian

The Anderson-Darling test
failed

| ‘ raw data
: down sampled by 2
—— band-pass-filted 10 kHz to 3 MHz




Background Periodic
Signal

A 13 kHz background signal
remained in the data

—— band-pass-filted 10 kHz to 3 MHz

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 0.00040 0.00045 0.00050
time in seconds

0.0001 0.0002 0.0003 0.0004 0.0005
time in seconds
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Sensitivity and Stability



Axion Noise Floor

—— Axion data Run 6
—— SQUID baseline
ADC noise floor (pickup frame)
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Noise-Equivalent Strain

Mir R AIL

9
N
e
Q
=
OV
we

The noise-equivalent strain
sets the detector sensitivity
to be able to compare to 00 |, B (“”““al
other detectors in the field _ ”

~ LIGO-Virgo

MAGO 2.0 https://arxiv.org/pdf/2303.01518.pdf
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Noise-Equivalent Strain

Treat all the noise as if it originated on the detector input /S, (f)

Sa () = ([AOIDA f = V2 Fr(f)

T Fyapc () = Fopicp )

pickup—~VADC

—2 _
Spickup (f) % (h+/>< (w) X w? X Simulation Results) = F,(f)
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Noise-Equivalent Strain

Theoretical calculation
performed by Nicholas Rodd

value from theory
—— experimental result

10°
Frequency (Hz)




Searching tor the Merger
Signal



figure-8

Merger Search

Vary the amplitude of the signal

- distance and direction of the signal

0.004 -

0.002

0.000

-0.002 -

-0.004 -

1000 2000 3000 4000 5000
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Gaussian Process

Since we have a non-Gaussian background, we cannot use a
traditional matched filter

A GP works by fitting multiple distributions to data with a joint
Gaussian distribution

Cf0) kQox)  kGoxy) o k(o)
FOO | e[ [KGL0) KGra) - ko)
Flx). k(o x) kCuxn) o k(o Xn).




Gaussian Process

We choose a covariance matrix (also called a kernel)
K(x;,x;) = Cov(f(xy), f(x))

For our periodic background we choose a periodic kernel

K(x;,x;) =exp (—Fsin2 [g ‘xi - xju)
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Gaussian Process

The marginalized likelihood for the residuals is given by

p(rit,A) = N(m(t),K)

We can use the marginalized log-likelihood to construct the test
statistic

1
log(p(r|t, 4)) = ) (rT K~1r + log(det|K|) + nlog(2m))

The test statistic is
TS = -2 log(p(rlt,A))

49



Signal Injection

=
=,
@)
-
<
o
o
o
@]
q
=
)
=

Data w/ Injected Signal
—— Null
—— Inferred

1.0 1:5
Time [seconds]

2.0

Test Statistic

Best Fit
w— 95% Upper Limit
— True

100 150
Signal Amplitude

50



== True

Signal Injection = X

Found amplitude

Varying the injection
amplitude over one
segment

40 60
Input amplitude

—— Best Fit
—— 95 % Upper Limit

Constant amplitude
with varying data
segments

Found amplitude

60
Data Segment




Merger Exclusion

Time step At = 0.2 us
Nprocess =T/At — (ttemplate/At + 1)

Nprocess ~ 3 x10%

Too many steps to process, need alternate approach
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Future Searches at High-Frequency

Transient searches: PBH binaries
— Online trigger

Stochastic signals: Astrophysical backgrounds and cosmological
signals

— Stationary
4
— Gaussian distributed 2 ~ e /
i) o0 (1037) (1kHz)
— Isotropic

— Unpolarized
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Future Searches: Stochastic signals

. 472
= 3H

(S/N)*
F

f2Su(f)

For one detector:  [Qew(f)]

4 35.(f) (S/N)?
32 2TAT E

For two detectors:  [Qaw(f)]min

1 ~ 1% 10> 150Hz") /? LS
OTAf Af i

)1/2
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Future Searches: Stochastic signals

ABRA-GW + DMRadio 50 L (in an
axion configuration)

1072 1071 10°
£ [MHZ]

Phys. Rev. Lett. 129, 041101 — Published 20
July 2022: Valerie Domcke, Camilo Garcia-Cely,

and Nicholas L. Rodd e



Conclusions & Takeaways

— Axions and gravitational waves can both be searched for with
electromagnetism

— We modified a lumped-element axion detector to
simultaneously detect axions and high-frequency gravitational
waves

— Future searches can look for more allusive signals with multiple
detectors
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Primordial Black Holes

PBHs were formed before matter domination from over-densities
in the plasma

5§ >6, = c?

Stellar BHs are stellar remnants

- BHs formed after matter-radiation equality must be larger
than 3 Mg
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Primordial Black Holes

Microlensing
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Early creation results:

- PBHS COUld be tiny enough to 101_40—18 10—15 10—12 10—9 10—6 10—3 100 103
be DM as a result of Hawking Meon (Mo ]
12t DOI: 10.48550/arXiv.2311.05942
radlatIOﬂ DOI: 10.5281/zen0do0.3538999

— PBHs could also be massive,
after continuously accreting
mass over their lifetime
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Primordial Black Hole Binaries

In-spiral Merger
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Primordial Black Hole Binaries

Primordial blackhole in-spiral coherence time:

8/3 _5 5/3
T ~0.02s (MHZ) (10 M@)
f m

e.g., for f =10 kHz and t = 2 days we would be looking for 10-¢
Mg PBHs

61



Axion Signal

Axion Mass [eV]
101 10-10 Axion Mass [eV]
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Simulated Data Standard Halo Model
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0.00035 1 ml = 0.3 M sun, m2 = 0.3 M _sun

ml = 0.2 M sun, m2 = 0.3 M_sun

Te r Y ] ‘ a te S 0.00030 1 ml = 0.2 M _sun, m2 = 0.2 M_sun
p ml = 0.1 M sun, m2 = 0.2 M _sun

0.00025 1 ml = 0.1 M sun, m2 = 0.1 M sun

f ml =0.09 M sun, m2 = 0.09 M_sun
0.00020 +

= 0.00015 -

L

strain squared

0.00010 -

0.00005 A

0.00000 +

Testing different mass
combinations to see

frequency [Hz]

ml = 0.3 M sun, m2 = 0.3 M _sun
ml = 0.2 M sun, m2 = 0.3 M sun
ml = 0.2 M sun, m2 = 0.2 M _sun
ml = 0.1 M sun, m2 = 0.2 M _sun

._.
S
-

which produces the

strongest signal, also
cross-correlation tests | i 04000 i GO
with white noise

~l

— —_

o| (=)
- |
o

p—
o
[

strain squared

frequency [Hz]




Signal to noise ratio

SNR = gayy\/pDMgVBmax(

Min

(tt)1/4

Ly

)

S(I)(Dl/z
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Signal to noise ratio

My, (Tt)1/4
SNR :[gayylprM%VBmax ( I ) 1/2
T Sq)q)

/

Axion to photon coupling
constant

X

Local dark matter density
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Signal to noise ratio

SNR = gayy\/le_\E-gEIBmax(

/

Geometric factor ‘

Min

(tt)1/4

Ly

)

S(b(b1/2
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Signal to noise ratio

SNR = gaVVVpDMmax | L,

/

Magnetic field
volume

M in) (te)'/*

S(I)(Dl/z

N

Maximum value of
the magnetic field
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Signal to noise ratio

SNR = YayyV PomGV Bax

o

S(b(b1/2

Inductive coupling
of the SQUIDs
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Signal to noise ratio

in (tt) 1/4

M
SNR = gayy\/pDMgVBmax

Inductive coupling to the
readout circuit

1
S<D<D

/2

69



Signal to noise ratio

M;n\|(Tt) /4
Ly )_’1/2

SNR = gayy\/pDMgVBmax(
(OJ

Axion coherence time and
the integration time
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Signal to noise ratio

M;, (Tt)1/4
SNR = Yayy Pom GV Brax ( I b/z
S

Flux noise level/ noise on
our SQUIDs
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Signal to noise ratio

Min)XTt)l/ *

SNR = gayy\/pDMgVBma{( L, Jg
(OJ

/

Coupling of SQUIDS to
axion sighal through the
pickup structure
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