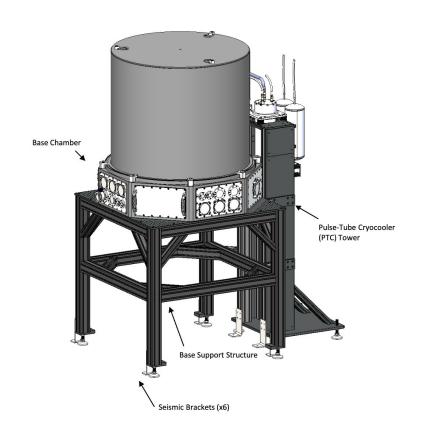
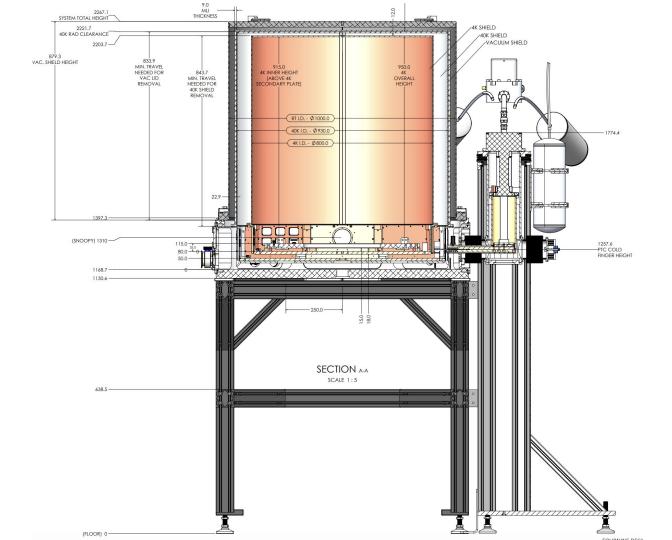
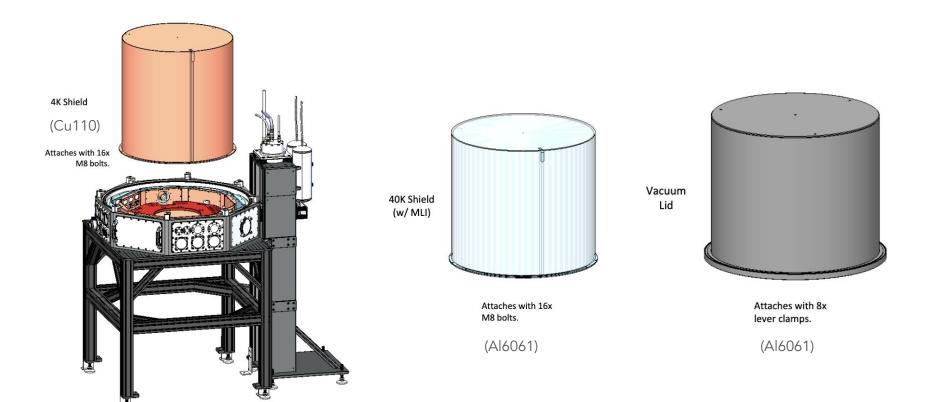
Woodstock


Maria Simanovskaia August 5, 2024 DMRadio Collaboration meeting at Stanford, CA


Woodstock is a 4 K cryostat being built by Four Nine Design

- Billings, Montana
- Caleb Schreibeis
- Jerry Schmaig
- DMRadio-50L up to 4 K ring

We have finalized the design of Woodstock (except the 4 K ring itself), and it is currently being manufactured.


We will know soon a detailed timeline, but expecting Woodstock to be complete by November.

Dim. in mm.

Woodstock radiation shields

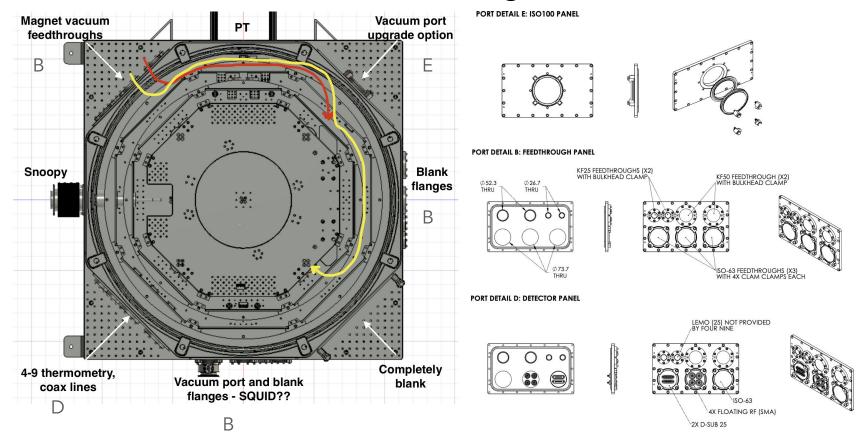
Estimates of masses that Woodstock needs to support

		baselin	ie	upgrade	
		baseline material	mass (kg)	upgrade? mass (kg)	
20 mK plate	corset	Al	1.4	4.5	
	wings	Al	4	4	
	ind frame (top and bottom)	Al	0.6	1.8	
	ind frame (rods)	sapphire	0.5	0.5	
	capacitor	Nb, vacuum	6.25	6.25	
	SQUIDs / TT	N/A	1	1	
	pogo stick	Nb	0.095	0.095	
	copper rod for cold finger connection	Cu	5	5	
			18.845	23.145	
1 K ring	20 mK plate	Cu	5.47	5.47	
	1 K plate	AI + bottom Nb sheet	9.05	9.05	
	1 K SC shield	Al + top Nb sheet	10.76	29.46	
	inv top hat	Al	0.67	2.13	
	copper rod for cold finger connection	Cu	5	5	
			49.795	74.255	
4 K ring	1 K ring	Al	2.73	2.73	
	magnet	Al, Cu, alumina, epoxy	74.6	74.6	
	connector bracket	Al	7.74	7.74	
	sheath	Nb	22	22	
	magnet support legs (with sheet and ri	r aluminum	4.7	4.7	
	magnet cold legs	copper	4.4	4.4	
			165.965	190.425	
				upgrade: change to Nb	

Woodstock expected heat loads on 4 K and 40 K plates

4 K:

Simulation Inputs and Estimates (based on worst case scenario):


1.	4K Cold Plate Material:	Copper(RRR100), C101		
2.	Temperature at thermal link attachment point:	3.59K		
3.	Total heat load from 40-4K thermal standoffs:	.071W		
4.	Total heat Input from upper 40K Radiation:	.10W	(E _{hot} =.15	E _{cold} =.15)
5.	Total heat Input from lower 40K parallel plate radiation:	.02W	(E _{hot} =.15	E _{cold} =.15)
6.	Total heat Load from HTS leads:	.08W		
7.	Total parasitic heat Loads on SW Panel: 24DC, 4x RF	.02W		
8.	Total parasitic heat Loads on SE Panel:	.01W		
9.	Total heat Load from (future) floating 4K ring standoffs	.05W		

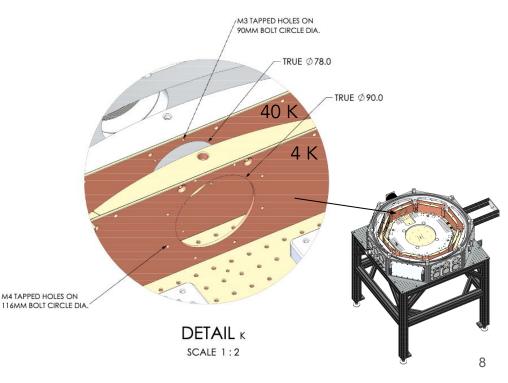
40 K:

Simulation Inputs and Estimates (based on worst case scenario):

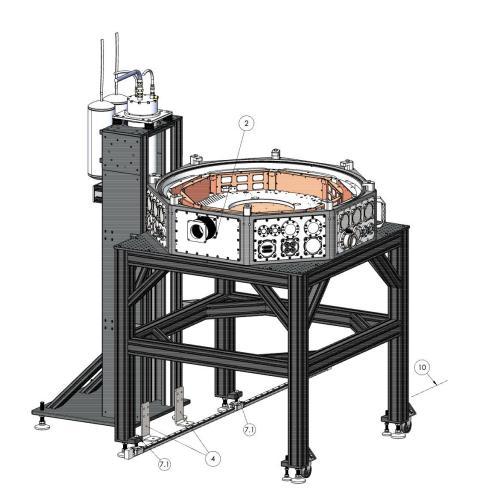
1.	40K Cold Plate Material:	C110 Copper		
2.	Temperature at thermal link attachment point:	42.6K		
3.	Total heat load from 300-40K thermal standoffs:	.8W		
4.	Total radiation heat load on interface panel layer:	10.64W	(E _{bot} =.1	$E_{cold} = .05$
5.	Total radiation heat load on top and bottom MLI layers:	.65W		E _{cold} =.001)
6.	Total radiation heat load on cylinder MLI layer:	1.16W		E _{cold} =.001)
7.	Total heat Load from HTC leads:	7W		
8.	DC Wiring Estimate:	.2W		
9.	RF Wiring Estimate:	.07W		

Woodstock interfaces: feedthroughs

Woodstock interfaces: cold snout

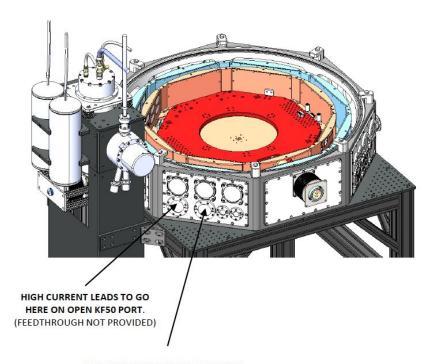

Flexible 40 K Flexible connection: bellows fingerstrips

Flexible 4 K connection: Al strips



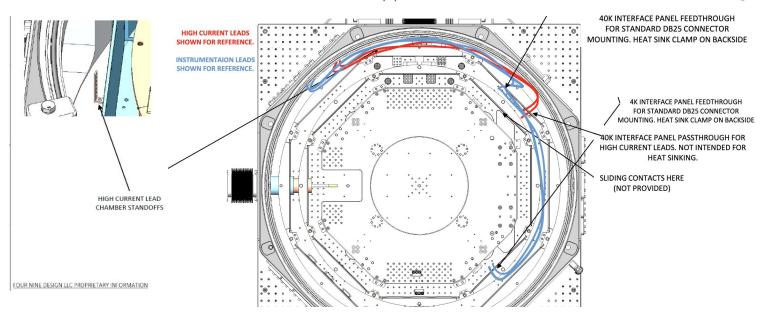
Mating areas in Woodstock

Assembly thoughts

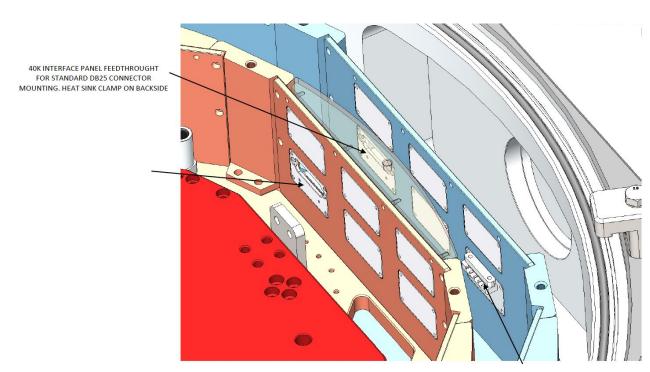

Woodstock will sit on a translation system.

Woodstock interfaces: magnet (300 K)

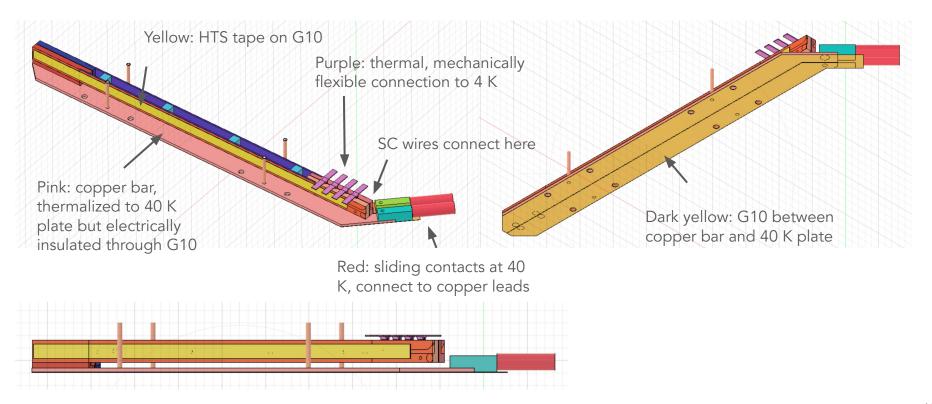
Vacuum feedthroughs


- High current leads on a KF50 port (two leads)
- Instrumentation wires on a separate KF50 port (SSI usually use a 15 pin connector and use 12 pins on it for thermometers and heaters)

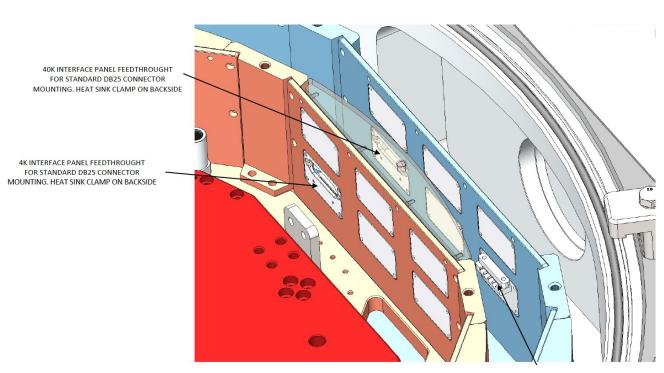
TO GO HERE ON OPEN KF50 PORT.
(FEEDTHROUGH NOT PROVIDED)


Woodstock interfaces: magnet (300 -> 40 K)

- Instrumentation wires and magnet leads are routed from the NW panel to the NE panel of the cryostat, passing under the Four Nine 40 K and 4 K cold fingers
- Magnet leads are supported by insulating standoffs from the base chamber, each lead is made of a pair of gauge 8 leads insulated with kapton and fiberglass
- Instrumentation wires are twelve copper 32 AWG wires, four for heaters and eight for thermometers


Woodstock interfaces: magnet (40 K)

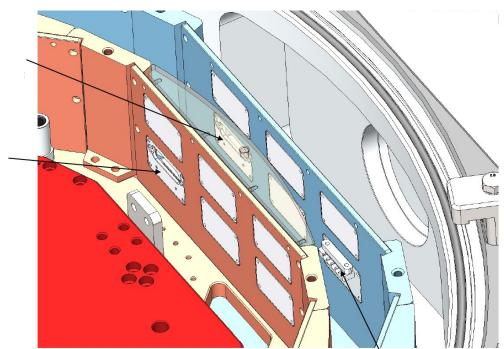
- Magnet leads pass through 40 K flat panel, but not thermalized to the flat panel - they are thermalized by the base of the HTS lead assembly to the 40 K plate
- Sliding contacts to HTS lead assembly are below the 4 K plate
- Instrumentation wires need to be thermalized at 40 K flat panel feedthrough


4K INTERFACE PANEL PASSTHROUGH FOR HIGH CURRENT LEADS. NOT INTENDED FOR HEAT SINKING.

Wire routing 40 -> 4 K: HTS lead assembly

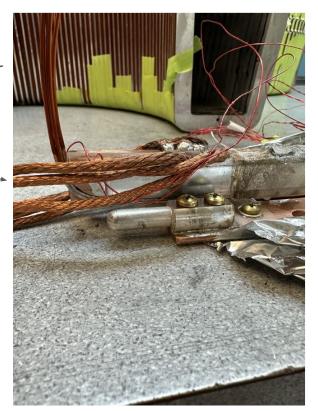
Wire routing 40 -> 4 K: Instrumentation wires

- CuNi for thermometers
- Copper for heaters these need to be ~1 m
 long, will carry ~1 A of
 current when in use
 (during magnet charging)



4K INTERFACE PANEL PASSTHROUGH FOR HIGH CURRENT LEADS. NOT INTENDED FOR HEAT SINKING.

4 K feedthrough: Instrumentation wires


Instrumentation wires
 need to be thermalized at
 4 K flat panel
 feedthrough

4K INTERFACE PANEL FEEDTHROUGHT FOR STANDARD DB25 CONNECTOR MOUNTING. HEAT SINK CLAMP ON BACKSIDE

4 K feedthrough: HTS assembly and SC wires

- 4 K cover above HTS assembly
- SC leads go through two holes in the 4 K cover
- HTS assembly thermalized to 4 K plate by flexible thermal attachment

end.