
ML-based Reconstruction for 2x2:
Status of New Training
2x2 ML Weekly Meeting

François Drielsma (SLAC)

on behalf of the ML working group

July 3rd, 2024 



ML Reco. Subgroup, convened by yours truly. Goal:

● Apply ML-based LArTPC reco. chain to 2x2.
SLAC: K. Terao, P. Tsang, Y. Chen, D. Douglas, Tufts: J. Wolcott,                              

J. Micallef,  LBNL: M. Kramer, UCI: S. Kumaran,  UIowa: O. Neogi,    

Rochester: H. Utaegbulam, ANL: Z. Djurcic, M. B. Azam
● Weekly meeting on Wed. 2PM CST (dunend-simreco-technical@slac.stanford.edu)
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Reconstruction flow (lartpc_mlreco3d):

1. Voxel semantic classification, point identification (CNN: UResNet+PPN, L. Dominé)

2. Dense clustering (Smart DBSCAN, CNN: Graph-SPICE, D.H. Koh)

3. Particle aggregation, shower primary identification (GNN: GrapPA-Track/Shower)

4. Interaction aggregation, particle identification, primary identification (GNN: GrapPA-Interaction)

ML-Based Reconstruction for 2x2, F. Drielsma (SLAC)

Scalable Particle Imaging with Neural Embeddings

https://github.com/DeepLearnPhysics/lartpc_mlreco3d
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
https://arxiv.org/abs/2007.03083
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Training/Validation sample
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Training sample (0.2 M) generated using the DeepLearnPhysics generator

● 1-3 particle bombs (multi-particle vertex, aka MPV)

● 1-5 single particles (multi-particle rain, aka MPR)

MPV

MPR

ML-Based Reconstruction for 2x2, F. Drielsma (SLAC)

https://github.com/DeepLearnPhysics/DLPGenerator


Training/Validation sample
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Training sample (0.2 M) generated using the DeepLearnPhysics generator

● 1-3 particle bombs (multi-particle vertex, aka MPV)

● 1-5 single particles (multi-particle rain, aka MPR)

MPV

MPR

Issue with Module 2
● Now fixed, Kazu reproducing 

0.5 M samples this week
● Ignored for metrics in this talk

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://github.com/DeepLearnPhysics/DLPGenerator


Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Classify pixels 
into categories 
with UResNet

2x2 simulation

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation
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Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Observations/challenges:
● Michel/Delta ~0.1% of pixels

○ + thick tracks = bad delta visibility
● Low training stats (200k images)
● 99% track/shower separation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Identify particle 
end points

2x2 simulation

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Points of Interest
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Identify start points of showers and end points of tracks

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Paper: PhysRevD.102.012005

2x2 simulation

Observations/challenges:
● Points predicted at module breaks

○ Understandable impurity

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Classify pixels 
into dense 
clusters

Paper: arXiv:2007.03083

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Paper: arXiv:2007.03083Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Dense Fragment Formation
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Break track/shower fragment instances where constituent pixels touch

● Cluster track/shower fragments at this stage

2x2 simulation

Paper: arXiv:2007.03083

Observations/challenges:
● Overzealous shower fragmentation

○ Needs further study
○ Aggregator can pick up slack

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://arxiv.org/abs/2007.03083


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Aggregate 
particle 
fragments 

Paper: PhysRevD.104.072004

2x2 simulation2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Observations/challenges:
● Guess how many showers here?

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

Paper: PhysRevD.104.072004

2x2 simulation

Observations/challenges:
● Guess how many showers here?
● … high energy pi0 are hard

○ Highly collinear showers

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation
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Aggregate 
particles

Paper: PhysRevD.104.072004

2x2 simulation 2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation
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2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation
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2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Interaction Aggregation
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2x2 simulation

Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Observations/challenges:
● Multiplicity higher than NuMI
● Some invisible vertices

○ No obvious convergence point
● Some activity exits then re-enters

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Primary Identification
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2x2 simulation

Identify particle originating from the primary vertex

● Secondaries — Primaries

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

Accuracy: 91 %

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Primary Identification

24Paper: PhysRevD.104.072004

2x2 simulation

Identify particle originating from the primary vertex

● Secondaries — Primaries

Observations/challenges:
● NuMI energies harder than BNB

○ Many secondary interactions
● Primary vertex not always obvious

?

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification
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2x2 simulation

Classify particles within interactions into different species

● Photons (0), Electron (1), Muons (2), Pions (3), Protons (4)

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification
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2x2 simulation

Classify particles within interactions into different species

● Electron, Photons, Muons, Pions, Protons

Observations/challenges:
● Currently no stat. weighting
● Some invisible vertices

○ No obvious shower gaps
● Lack of Bragg peak (tracks)

○ Particles mostly not contained
○ Lots of nuclear interactions

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


SBN-2x2 Joint ML Workshop

Goal: Familiarize analyzers with the inner workings of the ML-based reco. chain

Where: Tufts University, Boston, MA

When: 22-26 July, join us!!! https://indico.slac.stanford.edu/event/8926/

2023 ML workshop at CSU

Scalable Particle Imagining with Neural Embeddings, F. Drielsma

https://indico.slac.stanford.edu/event/8926/


Current Status:

● New training sample tested!

○ Looking good, addressed most issues

○ Module 2 bug fixed, new sample underway

● Transfer train with fix this week

● MR5 beta 3 (?) imminent

○ Should process up to LArCV to validate 

ASAP, then push through mlreco next week

Check out this brand new 2x2            
interactive reconstructed event

ML-Based Reconstruction for 2x2, F. Drielsma (SLAC)

Conclusions

https://s3df.slac.stanford.edu/people/drielsma/event_full_2x2_sim_mpvmpr.html

