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Premise

Fig 30 from PRD

Samples

Same data and simulation samples as Alic’s SIMP (L1L1) search.

Selections

Rely on Alic’s thorough study and validation, copy pre-selection
and start with same final selection variables.

Search and Exclusion

■ Search for excess in mreco vs min(|y0,e− |, |y0,e+ |) space
■ Exclude by using OIM on the z distribution after final

selections
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y0 Distribution by Track Type
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N2(3.37 m, 0.273 mm, 0.121 mm)
N2(0.64 m, 0.653 mm, 0.139 mm)

Selection

Pre-selected vertices and required to be L1L2
(i.e. tracks for L1L1 or L2L2 vertices are not
included in this plot).

N2(µ, σ1, σ2) is the sum of two normal
distributions that share the same mean µ.

■ L2 tracks slightly broader than L1 tracks
(expected)

■ Both centered on 0 within 5 µm

■ Width of core y0 distribution is only
∼ 18 µm larger for L2 tracks compared
to L1 tracks (while the tail ends up
being ∼ 3× wider)
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Mass Resolution Comparison
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Selection

Pre-selected vertices – no truth matching
done (hence the separation between L1L1
here and Alic’s L1L1 in black)

■ Seeing L1L2 widening in mass resolution
by < 20% across mass range

■ Separation shrinks as mass is increased

Not Used
The following reach comparisons use “Alic L1L1” in
order to maintain comparability with prior estimates.
Updating to an L1L2 mass resolution would not be
difficult but is left for the future when the cuts and
optimization strategy have been more established.
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Reach of Punzi-Optimized Cuts
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ZBi Optimization

Replicating optimization procedure as developed by Alic – a one-tailed binomial p-value test
(with the p-value converted to a significance).

ZBi =
√
2erf−1(1− 2pBi)

where

pBi =
ntot∑
j=non

P(j |ntot; 1/(1 + τ)) ≈ B(1/(1 + τ), non, 1 + noff)/B(non, 1 + noff)

= Breg(1/(1 + τ), non, 1 + noff)

where B(a, b) is the complete beta function, B(x , a, b) is the incomplete beta function, and
Breg(x , a, b) is the regularized incomplete beta function. Used τ = 1, non = S + B, and
noff = B for this evaluation, so in summary the FoM is

ZBi =
√
2erf−1 (1− 2Breg(0.5, S + B, 1 + B))
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Optimize Cuts Indepedently
Choosing ϵ2 = 10−6
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Reach of ZBi-Optimized Cuts
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Comparison of Reaches
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Future Work

Optimization Strategy

■ Staged approach – optimize min-y0 after applying VPS cut

■ Could weight Punzi FoM by decay weighting along z (pretty close algorithmically to ZBi)
or optimize Punzi within each z bin (cuts are functions of z)

Exclusion Estimate

■ Alic has been seeing hints that drawing the exclusion estimate at 0.1 in Expected /
Allowed for 10% is overly optimistic

Additional Material

■ Various distributions (mass vs z, z vs min-y0) as selections are made

■ Statistical combination of L1L1 and L1L2 exclusion estimates
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Questions
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Comparison of Reaches
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Sample Size Comparison

To help contextualize reach estimates, it is helpful to compare the luminosity of these two
reconstruction categories.

Category N7800 Ratio to L1L1

L1L1 2216982 1.0

L1L2 1445740 0.65

Table: Luminosity comparison between the two reconstruction categories being studied. N7800 is the
number of pre-selected vertices that correspond to the given reconstruction category. No other
selections (for example, on Psum) were made.
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Mass Resolution Calculation
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L1L1
L1L2 Selection

Pre-selected vertices – no truth matching
done (hence the separation between L1L1
here and Alic’s L1L1 in black)

■ Select core of distribution by calcuating
mean of histogram and dropping bins
further than 3σ away from mean

■ Fit this core with a normal distribution
to obtain µ and σ
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ZBi Cut Values and Fits
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Cut Comparisons
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Displacement of SIMP Signal Events
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One of the first things I did to make sure samples didn’t
need to be created.

■ Different colors correspond to different mass points

■ Truth-level decay vertices sampled out until
∼ 200 mm

■ Close to the same z position as L1, so I think these
samples can be faithfully used to study the L1L2
selection

■ Idential distribution across colors makes me think
that the random seed determining the decay length
was not changed, but I think that is okay since we
normalize by this distribution during exclusion
estimates anyways
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Pre-Selection on Vertices
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Data
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■ Same Pre-Selection on vertices as developed and
validated by Alic

■ Seeing same efficiencies as documented within Alic’s
SIMP (L1L1) note
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Pre-Selection on Events
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■ Similar to first stage of Alic’s event selection, although
dropping reconstruction category requirement

■ Largest effect is requiring at least one pre-selected vertex
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Number of Pre-Selected Vertices per Event
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Event Pre-Selection basically amounts to choosing the
events falling into the N = 1 bin.
Data is the only sample which has the additional
requirement of the Pair1Trigger which has a small effect.
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Search Method
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1. Fill histogram with data

2. Set mass edges at 1.5σ and 4.5σ (values
optimized by Alic)

3. Set upper min-y0 edge at cut value

4. Lower other min-y0 edge (a.k.a. y0
“floor”) from the cut value until there are
at least 1k events in region C

5. Calculate expected number of events in F
and compare to observed number of
events

6. Estimate p-value by throwing toy
experiments in A+E (Poission), B+D and
C (Normal) and re-calculating F from
these toys
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Punzi Figure of Merit

Basis

Proposed in PHYSTAT2003 by Giovanni Punzi where a FoM is designed to be maximized while
improving both search and exclusion potential.

fpunzi =
E

a
2 +

√
B

where E is the signal efficiency, B is the background yield, and a is the desired confidence level
of search or exclusion (in number of σ, currently using 3).
Two main benefits (from my perspective)

■ Does not diverge as B → 0

■ Does not require knowledge of absolute rate of signal
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Experiments with Decay Weighting

First idea is to simply define a new FoM that includes the decay weighting function.

fDW =
1

a
2 +

√
B(t)

∫ ∞

ztarget

D(z)E (z , t)dz

where

D(z) =
∑

V∈{ρD ,ϕD}

BR(A′ → VπD)
exp((ztarget − z)/(γcτV ))

γcτV

This becomes equivalent to fpunzi in the ϵ → 0 limit where D(z) becomes flat and the events
are equally weighted along z . Calling this “Decay-Weighted Punzi FoM” and the integral
“Decay-Weighted Efficiency”.

Issues

■ May have to choose an ϵ2 value to optimize for

■ Pure maximum is often attained by removing the cut → look for where the FoM “flattens” out (i.e.
tigtening the cut does not improve the FoM much anymore) → choose cut that is the tightest cut getting
to 90% of the maximum
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Example Decay-Weighted Punzi Calculation
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Cut Choices by ϵ2 and mVD
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Chose VPS < 4 and then applied it to optimize min-y0.

Tom Eichlersmith (UMN) SIMP L1L2 August 13, 2024 25 / 11


