2016 SIMP L1L1 Unblinding Proposal

Alic Spellman Cameron Bravo + Matt G 07/23/2024

Introduction

- Request to unblind 100% SR data for 2016 L1L1 SIMPs
- Hit killing + momentum smearing applied to all MC samples
- MC background and Data agree well
- RadFrac + RadAcc + Mass resolution updated
- Full selection optimized using 10% Data in SR
- Background estimation and search window size studied using 10% Data in SR
 - $^-$ Performance also tested on larger stats 100% ${\rm CR}$
- $*z0_{min}$ cut shape was optimized using 10% data SR
 - Studied impact of further tightening cut to protect against statistical fluctuations in in the 100% data SR
 - Decided to tighten...remaining events in 10% data now SR very low
- OIM method sets upper limits on expected signal rate

Mass Resolution with MC Momentum Smearing

Moller Peaks with Momentum Smearing

Unconstrained Vtx KF Tracking

	μ [MeV]	σ [MeV]	$\sigma_{\rm err}$ [MeV]
Data	48.76	2.54	0.067
MC	48.52	1.87	0.016
$MC_{smeared}$	48.41	2.32	0.017

Constrained Vtx Seedtracker+GBL

	$\mu [\text{MeV}]$	$\sigma [{\rm MeV}]$	$\sigma_{\rm err} [{\rm MeV}]$
Data	48.93	2.06	0.012
MC unsmeared	48.43	1.	0.0033
MC smeared	48.35	1.93	0.0026

*MC Mollers skimmed from tritrig+beam MC, so difference in tails attributed to differences in MC beam and actual bkg in data

Smeared MC Mass Resolution

Selection

Table 5: The Preselection cutflow efficiency after each cut is applied in order.

Cut Description	Requirement		
Trigger	Pair1		
Track Time	$ Track_t < 6$ ns		
Cluster Time Difference	$\Delta_t(\mathit{Cluster}_{e^-}, \mathit{Cluster}_{e^+} < 1.45ns$		
Track-Cluster Time Difference	$\Delta_t(\mathit{Track}, \mathit{Cluster}) < 4.0\mathrm{ns}$		
Track Quality	$Track\chi^2/n.d.f. < 20.0$		
Beam electron cut	$p_{e^-} < 1.75{ m GeV}$		
Minimum Hits on Track	N_{2dhits} Track > 7.0		
Unconstrained Vertex Quality	$Vtx_{\chi^2} < 20.0$		
Vertex Momentum	$p_{e^-+e^+} < 2.4{ m GeV}$		

Table 6: V_0 selection. The time offset for data is 56 ns and the time offset for MC is 43 ns.

Figure 43: Reconstructed vertex z position versus Invariant Mass for the $\sim 10\,\%$ Data sample.

Signal and Control Regions

Expected Signal Calculation

Systematic Uncertainty

- Driven by MC cross-section uncertainties
- Estimated as ${\sim}7\%$ in 2016 A' analysis
- Same here

• Same here

Radiative Fraction – Fakes in Data?

- Background primarily Bethe-Heitler+Radiative tridents and cWABs
- No processes expected to contribute to meaningful fake trident rate
- Compare invariant mass in 10% data and tritrig+wab+beam (scaled to ~10%)
- No evidence of significant fake trident process in data
- Scale and shape both look reasonable

Radiative Acceptance

Systematic Uncertainty

- $\sim 11\%$ from Preselection cuts
- Need to study how acceptance changes with mis-alignments, and target position uncertainty *Sarah is producing these samples now!

Radiative Acceptance – Fit Polynomial

14

Expected Signal Calculation

$$N_{A'}(m_{A'},\epsilon) = \frac{3\pi m_{A'}\epsilon^2}{2N_{eff=1}\alpha} \frac{f_{rad}(m_{A'})}{A_{rad}(m_{A'})} \frac{dN_{CR}}{dm_{reco}}$$

Total number of A's

*systematic studies will involve mis-alignments and target uncertainty

$$F(z) = \left(\frac{dN_{V_D}^{\text{selected}}}{dz_{vtx_{\text{true}}}}\Big|_{z_{vtx}=z}\right) \left/ \left(\frac{dN_{V_D}^{\text{generated}}}{dz_{vtx_{\text{true}}}}\Big|_{z_{vtx}=z}\right)\right)$$

Tight SELECTION acceptanceXefficiency for signal generated with constant lifetime out to 20cm in z

 $f_{V_D}(\epsilon, z) = \frac{\exp\left(\frac{z_{\text{target}} - z}{\gamma c \tau_{V_D}}\right)}{\gamma c \tau_{V_D}} F(z) \qquad \text{``F(z) uses truth z, so don't need to say } z_{\text{target}}$ $F(z) \qquad \text{Lifetime-weighted dark vector acceptanceXefficiency}$

$$N_{sig}(m_{A'},\epsilon) = N_{A'} \int_{z_{target}}^{\infty} \left(BR(\rho_D) f_{\rho_D}(\epsilon,z) + BR(\phi_D) f_{\phi_D}(\epsilon,z) \right) dz$$

Full expected signal calculation

Tight Selection Variables 1. Target Projected Vertex Significance

- Require axial+stereo hits in L1 and L2
- Gives best vertex resolution
- Restricted to shorter lifetimes than L1L2+L2L2

Target Projected Vertex Significance

*Use 1% of files ending in 0 from each run to fit run-dependent beamspot

$$f(x, y) = \exp\left(-\frac{(x_{\rm rot} - \mu_{x_{\rm rot}})^2}{2\sigma_{x_{\rm rot}}^2} - \frac{(y_{\rm rot} - \mu_{y_{\rm rot}})^2}{2\sigma_{y_{\rm rot}}^2}\right)$$

Run Dependent Beamspot – Unrotated Coordinates

- *Why does the beamspot position change so much in data?
 - Machine control loves to mess with the beam
- Scale is mm, not crazy change
- Projection significance doesn't care, defined relative to beamspot parameters

Run Dependent Beamspot – Rotated Coordinates

Target Projected Vertex Significance

Combine \boldsymbol{x} and \boldsymbol{y} significance into single cut variable

"Target Projected Vertex Significance"

$$N\sigma_{V0_{proj}} = \sqrt{N_{\sigma x_{rot}}^2 + N_{\sigma y_{rot}}^2}$$

Target Projected Vertex Significance

Tight Selection Variables 2. Vertical Impact Parameter

Vertical Impact Parameter Cut

24

Vertical Impact Parameter Cut

25

Vertical Impact Parameter Cut

26 🖉

Vertical Impact Parameter Cut vs Zcut Analysis

Vertical Impact Parameter Cut Optimization

- z0_{min} shape optimized using 10%
 Data SR ONLY
- Cut is function of invariant mass, fit with 2nd order polynomial
- *This is not the final proposed cut...tighten later (+0.1mm) to protect from large fluctuations in bkg in 100% data SR

 $z0_{min}(m) > 1.0762 - 7.44534 \times 10^{-3}m + 1.58746 \times 10^{-5}m2$

Preliminary Tight Selection

Cut	Condition		
Layer 1 Requirement	e^- and e^+ have L1 axial+stereo hit		
Layer 2 Requirement	e^- and e^+ have L2 axial+stereo hit		
Target Projected Vertex Significance Cut (V0 _{proj})	$V0_{proj} < 2.0$		
Target Z Cut	$z_{vtx} > -4.3$ [mm]		
Impact Parameter Cut	$z0^{min}(m) > 1.0762 - 7.44534 imes 10^{-3}m + 1.58746 imes 10^{-5}m^2$		

Signal Search: Background Estimation

A bit of a correlation between $z0_{\mbox{\scriptsize min}}$ and Invariant Mass overall

 $z0_{min}$ versus mass is ~uncorrelated in narrow region centered on search window

Background Estimation Method

*Two different search windows

Using left and right mass sidebands tends to cancel the small linear correlation on either side

Background Estimation Method

Background Estimation Method

- ONLY use 100% data CR to evaluate how well background estimate reflects observed events
- Totally blind to 100% data SR
- NO cuts are based on this study
- *Larger statistics in this sample is convenient to test the ABCD mass sideband and search window size impact on background estimate quality
- *High psum vs low psum doesn't matter

Signal Search: Data Significance

 Bkg-only test statistic is random sample of Poisson with mean bkg b

$$f(x) = \frac{b^k}{x!}e^{-b}$$
 $b = \left(\frac{A+E}{B+D}\right)C$

b calculated by sampling 3 parent distributions

$$(B + D) \sim \mathcal{N}(B + D)$$

 $C \sim \mathcal{N}(C) * \sigma_{Normal} = \operatorname{sqrt}(N)$
 $(A + E) \sim \operatorname{Poisson}(A + E)$

• Build t_0 distribution using MC Toys (~100 million +)

 Bkg-only test statistic is random sample of Poisson with mean bkg b

$$f(x) = \frac{b^k}{x!}e^{-b}$$
 $b = \left(\frac{A+E}{B+D}\right)C$

- Sample from 3 parent distributions
 - $egin{aligned} (B+D) &\sim \mathcal{N}(B+D) \ C &\sim \mathcal{N}(C) & *\sigma_{ ext{Normal}} = ext{sqrt}(ext{N}) \ (A+E) &\sim ext{Poisson}(A+E) \end{aligned}$

poisson_low_err = lambda n : np.sqrt(n - 0.25) if n >= 0.25 else 0.0
poisson_up_err = lambda n : np.sqrt(n+0.75) + 1

Build t₀ distribution using MC Toys
 (~100 million +)

 Bkg-only test statistic is random sample of Poisson with mean bkg b

$$f(x) = \frac{b^k}{x!}e^{-b}$$
 $b = \left(\frac{A+E}{B+D}\right)C$

- Sample from 3 parent distributions
 - $egin{aligned} (B+D) &\sim \mathcal{N}(B+D) \ C &\sim \mathcal{N}(C) & *\sigma_{ ext{Normal}} = ext{sqrt}(ext{N}) \ (A+E) &\sim ext{Poisson}(A+E) \end{aligned}$

poisson_low_err = lambda n : np.sqrt(n - 0.25) if n >= 0.25 else 0.0
poisson_up_err = lambda n : np.sqrt(n+0.75) + 1

• Build t_0 distribution using MC Toys (~100 million +)

Bkg-only test statistic is random sample of Poisson with mean bkg b

$$f(x) = \frac{b^k}{x!}e^{-b}$$
 $b = \left(\frac{A+E}{B+D}\right)C$

b calculated by sampling 3 parent 0.2 distributions 80 90 100 110 What if A + E = 0? Invariant Mass [MeV] $(B+D) \sim \mathcal{N}(B+D)$ --- N Observed Toy MC Sam — Test Statistic Distribution $C \sim \mathcal{N}(C)$ * σ_{Normal} =sqrt(N) 103 $\mathsf{p}_{\mathsf{local}} = \int_{-\infty}^{\infty} f(t_0) \, dt_0$ $(A + E) \sim \text{Poisson}(A + E)$ p-value = .62362 poisson low err = lambda n : np.sgrt(n - 0.25) 10^{2} if n >= 0.25 else 0.0 poisson up err = lambda n : np.sgrt(n+0.75) + 10 Build t₀ distribution using MC Toys $(\sim 100 \text{ million } +)$ 100 10 15 20 0 5 t₀

z0_{min}[mm]

z0_{min}Cut

F

6-

A -

F

10³

10²

10¹

25

Error when A + E = 0?

- If A+E = 0, we can't build a Poisson distribution for the toys
- We could just force A+E = 1, but that's very conservative

Preliminary 10% Data SR

 σ_{avg}

Preliminary* Just used as a sanity check100% Data CRfor higher statistics

43

Signal Injected P-Values

show evidence for signal

Optimize ABCD Mass Sidebands: $\pm 2\sigma$ Search Window

Optimize ABCD Mass Sidebands: $\pm 2\sigma$ Search Window

Optimize ABCD Mass Sidebands: $\pm 2\sigma$ Search Window

Optimize ABCD Mass Sidebands AND Search Window Size

Scaled Area Between Observed and Expected

works for search windows $\pm 1-2.5\sigma$

Scaled Averaged Area Above and Below

*Search window too large systematically overestimates bkg *Looks like Sideband width of 4o

works for search windows $\pm 1\text{-}2.5\sigma$

Optimize Search Window Size ABCD Mass Sideband = 4σ

Scan Signal Window – 100% CR Data

Scan Signal Window – 10% Data

MC Injected Signal – 10% Data

- Check impact of shrinking search window by measuring change in sensitivity
- Inject MC Signal at each mass
- Search window range 1.5-2.5σ results in similar sensitivity
- Confirmed for different values of $\epsilon^{_2}$
- Decide to use Search Window = ±1.5σ
- *Already shown the bkg estimate looks good for this search window size with ABCD Mass Sideband Width = 4σ

Further Tighten the z0_{min} Cut?

*This cut was optimized on 10% Data SR
*Want to protect against large statistical fluctuations when unblinding 100% Data SR

Tightening $z0_{\min}$ Cut

*Keep optimized shape,tighten cut by simply adding+N [mm] to cut polynomial

57

Final Selection - Background and Expected Signal

OIM Results for 10% Data

• Small region of exclusion in 10% data already

Backup

	Data Eff	Tritrig-Beam Eff	WAB-Beam Eff	Tritrig-WAB-Beam Eff	40 MeV Signal Eff	100 MeV Signal Eff
$ e^{-}Track_t < 6.0$ ns	1	1	1	1	1	1
$ e^+ Track_t < 6.0$ ns	1	1	1	1	1	1
$\Delta_t(Cluster_{e^-}, Cluster_{e^+} < 1.45 \text{ns})$	0.96	0.99	0.99	0.99	0.98	0.98
$e^{-}\Delta_t(Track, Cluster) < 4.0$ ns	0.99	1	1	1	1	1
$e^+\Delta_t(Track, Cluster) < 4.0 \text{ns}$	0.99	1	0.99	1	1	1
e^{-} <i>Track</i> $\chi^{2}/n.d.f. < 20.0$	0.99	1	1	1	0.99	0.99
e^+ Track $\chi^2/n.d.f. < 20.0$	0.98	1	0.98	0.99	0.99	0.99
$p_{e^-} < 1.75 { m GeV}$	1	1	1	1	1	1
$N_{2dhits}e_{Track}^- > 7.0$	1	1	1	1	0.93	0.98
$N_{2dhits}e^+_{Track} > 7.0$	0.98	1	0.94	0.98	0.93	0.97
$Vtx_{\chi^2} < 20.0$	0.83	0.97	0.65	0.86	0.97	0.97
$p_{e^-+e^+} < 2.4\mathrm{GeV}$	0.99	1	0.99	1	1	1

Preselection N-1 Cutflow Efficiency

Table 4: "n-1" cut efficiency. The efficiency of the cut under consideration is calculated assuming that all other cuts applied correspond to an efficiency of 1.

