EOS, bunch spacing, feedbacks E300 collaboration meeting

Alexander Knetsch / Associate Staff Scientist / SLAC 24 June 2024

Stanford University

Electro-optical sampling can distinguish driver and witness beam

Driver Witness

Hunt-Stone, Keenan, et al. "Electro-optic sampling beam position monitor for relativistic electron beams." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 999 (2021): 165210.

Changes from last year

- Improvements on probe references
- Changes to EOS setup and alignment
- EOS commonly used

EOS to stabilize laser timing

- Relative time-of-arrival between electron beam and laser can drift by several 100 fs
- Ps drifts can move EOS signal out of field-of-view of EOS diagnostic
- PID on laser target time set point keeps signal on EOS and can stabilize interaction for timing-sensitive experiments such as E-320.

EOS-measured TOA and expected TOA

	R56	R16 @ BPM	ВРМ	Covariance	Fit slope (fs/fs)
Dogleg	-1.5618 mm	-262.7814 mm	10:731X	0.0048 E4	27.02
BC11	-45.9847 mm	-251.0805 mm	11:333X	0.1424 E4	0.0764
BC14	-36.0141 mm	-437.3561 mm	14:801X	4.196 E4	0.79271
BC20	6.9132 mm	46.5288 mm	20:2445X	0.0255 E4	7.9271
All of the above				4.3692 E4	0.8127

- Simple Model for TOA in good agreement with measurements
- TOA in this case dominated energy-variations in BC14

500

20

EOS to measure bunch separation

- Expected plasma wavelength 161 um
- Optimal bunch separation 138 um | 0.85 $\lambda_{\rm p}$
- Width of Distribution (rms) 7.5 um | 0.047 λ_p

Assumptions:

- EOS calibration = 19.75 fs/px
- Spectrometer imaging Plasma entrance+27 cm to LFOV
- Imaging Energy = 11 GeV

- 303/998 shots within 2 sigma
- Accelerator drifts and jitters in and out of phase matching
- Jitter can be smaller than phase acceptance
- What to do about drift ?

Controlling bunch separation with Pulse stacker delay

- Pulse stacker delay line can set delay of witness beam with respect to driver
- Suitable control knob to stabilize bunch separation ?

Stabilizing bunch separation on Pulse stacker delay

Dataset E300_08369.

- Minimally improved Bunch separation stability
- No more clear charge peak as function of bunch separation
- 372/998 shots within 2 sigma
- DTOTR2 filter IN
- PSDL varies witness-beam energy

What is different ?

Dataset E300_08356 | No feedback

Dataset E300_08369 | PSDL feedback

No-feedback case

- Bunch separation dominated by Linac 2 energy
- Weak correlation between x and BC20 energy
- PSDL feedback case:
- Weaker dependency of bunch separation and BC14 energy
- More complex correlation correlation between x and BC20 energy

Did we really improve things ?

Dispersion-response to linac 3 energy offsets

- Dispersion at IP can be a complex function.
- Varies strongly with sextupole settings
- Ideal case:
 - No dispersion on 3156 (US BPM)
 - No dispersion on 3218 (DSBPM)
 - Round and small beam at IP
- Preliminary testing: Achieving all three together is extremely challenging
- Dispersion correction requires more studies

450

Feedback directly onto L2 phase:

- Every attempt destabilized Accelerator
- Development might be possible with more effort
- Feedback on input onto L2 phase feedback :
- Spoofing BC14 bunch length monitor readback to mislead BC20 feedback
- Slow effect due to indirect modification
- Accelerator remained stable

- EOS excellent tool for our needs to measure shot-to-shot bunch spacing
- Variations in energy out of Linac 2 can dominate time-of-arrival and bunch separation
- Accelerator can be set up such that bunch separation remains the only issue for injection
- Data suggests we need a bunch-separation jitter < 7.5 um | 25 fs
- All of this needs more work

Thank you !