

Thin-film detectors

Jennifer Ott jeott@ucsc.edu

November 7, 2024 4D Tracking workshop

Thin-film detectors

Motivation and potential:

- Low mass
- Low material budget
- Large scale manufacturing
- '3D integration' or monolithic detector: avoid hybridization for small pixels, keep low interconnect capacitance
- Different semiconductor materials

Thin-film growth methods are already used in detectors!

- High-resistivity epitaxial Si on low-res substrate, e.g. for LGADs: deposition is done as a thin film onto a substrate (of identical material and crystal structure), but result is a a 'thick' substrate for hybrid detector
- CVD polycrystalline diamond: used for 'bulk' material deposition
- Thick Si detectors which are ground down (ALICE ITS3) are not thin films in this sense...

Examples on the path towards thin film particle tracking detectors shown here:

- Crystalline material (InP) as test case and reference for thin film sensors
- aSe thermal evaporation onto active ASIC

S. Kim et al, CPAD 2023, https://indico.slac.stanford.edu/event/8288/contributions/7503/

S. Kim, V. Berry, J. Metcalfe, A.V. Sumant, Thin film charged particle detectors. JINST 18 (2023)

Deposition methods & availability

Physical

- (Spin coating, dip coating)
- Sputtering
- Thermal evaporation
- E-beam evaporation
- Molecular beam epitaxy
- Ion- / laser beam assisted deposition

Facilities

- Individual labs or groups often in Chemistry or Engineering departments
- Micro- / nanofabrication facilities at universities or national labs: e.g. Stanford, SLAC, ANL, BNL, LBNL
- Research institutes or semi-commercial centers, e.g. FBK, CNM, Sintef
- Commercial vendors

Chemical

- (Oxidation)
- Plating
- CVD
 - Plasma-enhanced CVD
- (MO)Vapour-phase epitaxy
- Atomic layer deposition

Thin film materials as charged particle detectors?

Sensor prototypes in InP: favorable properties, especially electron mobility, which is higher than in Si

Chosen as a commercially available small wafer material and crystalline reference to (amorphous) future thin film devices

PROPERTIES OF SEMICONDUCTOR MATERIALS AT 25°C									TABLE 1 (Continued)										
Material	Atomic Number	Density g/cm ³	Band- gap eV	Melting Point °C	Knoop Hardness	Crystal Structure	Ionicity	Dielectric Constant	E _{pair} eV	Resistivity (25°C) Ω-cm	Electron Mobility cm²/V · sec	Electron Lifetime sec.	Hole Mobility cm²/V · sec	Hole Lifetime sec.	μτ(e) Product cm ² /V	μτ(h) Product cm²/V			
Ge	32	5.33	0.67	958	692	Cubic	0	16	2.96	50	3900	>10-3	1900	1×10^{-3}	>1	>1			
Si	14	2.33	1.12	1412	1150	Cubic	0	11.7	3.62	up to 104	1400	>10-3	480	2×10^{-3}	>1	≈1			
CdTe	48, 52	6.2	1.44	1092	45	Hexagonal	0.61	11	4.43	109	1100	3×10^{-6}	100	2×10^{-6}	3.3×10^{-3}	2×10^{-4}			
CdZnTe	48, 30, 52	≈ 6	1.5 - 2.2	1092-1295		-			5.0*	1011	1350	10-6	120	5×10^{-8}	1×10^{-3}	6×10^{-6}			
CdSe	48, 34	5.81	1.73	>1350		Hexagonal	0.6	10.6	5.5**	108	720	10-6	75	10-6	7.2×10^{-4}	7.5×10^{-5}			
CdZnSe	48, 30, 34	≈ 5.5	1.7-2.7	1239-1520											≈10-4				
HgI ₂	80, 53	6.4	2.13	250 (127†)	<10	Tetragonal	0.67	8.8	4.2	1013	100	10-6	4	10-5	10-4	4×10^{-5}			
TlBrl	81, 35, 53	7.5	2.2 - 2.8	405-480	40	Cubic				1010					9×10^{-5}				
GaAs	31, 33	5.32	1.43	1238	750	Cubic	0.23	12.8	4.2	107	8000	10-8	400	10-7	8×10^{-5}	4×10^{-6}			
lnl	49, 53	5.31	2.01	351	27	Orthorhombic	0.8	26		1011					7×10^{-5}				
GaSe	31, 34	4.55	2.03	960		Hexagonal	0.53	8	4.5		75	5×10^{-7}	45	2×10^{-7}	3.5×10^{-5}	9×10^{-5}			
diamond	6	3.51	5.4	4027	104	Cubic	0	5.5	13.25		2000	10-8	1600	<10-8	2×10^{-5}	$< 1.6 \times 10^{-1}$			
TlBr	81, 35	7.56	2.68	480	12	Cubic	0.81	29.8	6.5	1012	6	2.5×10^{-6}			1.6×10^{-5}	1.5×10^{-6}			
PbI ₂	82, 53	6.2	2.32	402	<10	Hexagonal	0.8		4.9	1012	8	10-6	2		8×10^{-6}				
InP	49, 15	4.78	1.35	1057	535	Cubic	0.38	12.5	4.2	107	4600	1.5×10^{-9}	150	<10-7	4.8×10^{-6}	$< 1.5 \times 10^{-1}$			
ZnTe	30, 52	5.72	2.26	1295		Cubic	0.62	9.7	7.0**	1010	340	4×10^{-9}	100	7×10^{-7}	1.4×10^{-6}	7 × 10 ⁻⁵			
HgBrI	80, 35, 53	6.2	2.4-3.4	229-259	14	Orthorhombic				5×10^{13}					1×10^{-6}	$<1 \times 10^{-7}$			
a-Si	14	2.3	1.8				0	11.7	4	1012	1	6.8×10^{-9}	.005	4×10^{-6}	6.8×10^{-8}	2×10^{-8}			
a-Se	34	4.3	2.3				0	6.6	7	1012	.005	10-6	.14	10-6	5×10^{-9}	1.4×10^{-7}			
BP	5, 15	2.9	2	d1400	4700	Cubic	0.01	11	6.5**	1	10	10-9							
GaP	31, 15	4.13	2.24	1750		Cubic			7.0**		120		120						
CdS	48, 16	4.82	2.5	1477		Hexagonal	0.58	11.6	7.8**		300		50						
SiC	14, 6	3.2	2.2			Cubic			9.0**		$400(\alpha)$								
AlSb	13, 51	4.26	1.62			Cubic			5.05	<104	300		400						
РЬО	82, 8	9.8	1.9	886					6.47										
Bil ₃	83, 53	5.78	1.73	408		Hexagonal			5.5**	1012		6	a a su dan at a sua	for Door		UD LIGTOD -			
ZnSe	30, 34	5.42	2.58			Cubic		8.1	8.0**		100	Semi	conductors	tor Koom	SEMICO AND SE	MIMETALS			

Note: Materials are listed in order of decreasing $\mu \tau(e)$ at room temperature.

*Estimated for 20% Zn.

**Estimated.

†Solid/solid phase transition.

Nuclear Detector Applications Volume 43

Crystalline InP sensors

 $350 \,\mu\text{m}$ single-pad sensor bonded to 1-ch UCSC fast readout board with $470 \,\Omega$ transimpedance amplifier, second stage external 20dB RF amplifier

- Beta source: Sr-90
- Known HPK Silicon LGAD as trigger and reference

Radiation hardness:

- Investigated with single-pad sensors irradiated to 1e13, 1e14, 1e15, 1e16 n/cm² at JSI/Ljubljana with 1 MeV neutrons
 - High activation with In-114m in higher fluences

J. Ott, oral presentation, Characterization of InP sensors for future thin film detectors, 42nd RD50 Workshop

Crystalline InP sensors

 $350 \,\mu\text{m}$ single-pad sensor bonded to 1-ch UCSC fast readout board with $470 \,\Omega$ transimpedance amplifier, second stage external 20dB RF amplifier

- Beta source: Sr-90
- Known HPK Silicon LGAD as trigger and reference

Radiation hardness:

- Investigated with single-pad sensors irradiated to 1e13, 1e14, 1e15, 1e16 n/cm² at JSI/Ljubljana with 1 MeV neutrons
 - High activation with In-114m in higher fluences

J. Ott, oral presentation, Characterization of InP sensors for future thin film detectors, 42nd RD50 Workshop

Crystalline InP sensors

Performance:

- Comparatively small signal, around 15 mV at RT, but fast! Lower leakage/noise, larger signal at lower temperatures
- Rise time independent of bias voltage, down to 250 ps after 150 V. Excellent timing resolution: 33 ps reached between 300 and 400 V

Radiation hardness:

- Leakage current increases; collected charge, pmax decrease as expected, but already at low fluences. Significant trapping in 350 µm bulk?
- Rise time and timing resolution are still fast at sufficient bias voltage and/or when cooled
- 1e15 samples have high leakage current and early breakdown, 1e16 not received yet

Amorphous Selenium; deposition on ASIC (ITkPix)

aSe is most established as x-ray detector for e.g. mammography panels

Approach here: utilize pixelated ASIC developed for HEP, deposit active sensor material directly on top by relatively low-temperature thermal evaporation

- Using ITkpixV1.0 (RD53B), V2.0 (recent)
- Leveraging expertise with ATLAS pixel modules to set up DAQ, perform chip calibrations and tuning before scans with radioactive source

A. Swaby, J. Ott, K. Hellier, M. Garcia-Sciveres, S. Abbaszadeh, *Hybrid a-Se/RD53B CMOS Detector: Initial Results*, Proceedings of SPIE Medical Imaging (2023), 12463, https://doi.org/10.1117/12.2654519

Amorphous Selenium; deposition on ASIC (ITkPix)

First prototype of ITkPix v2 chip with aSe film tested this summer

Regular testing routine (communication/eye diagram), digital & analog scan, tuning of threshold

• Deactivation of some edge columns was needed

Source scans with Kr-85 low-energy beta source and tabletop x-ray gun: effect of sensor bias voltage on hit rate and ToT well visible

Next steps: evaluation of aSe thickness, tuning of preamplifier feedback \rightarrow ToT response

Materials of interest for charged particle tracking?

						TABLE I												
-	(C:)	PROPERTIES OF SEMICONDUCTOR MATERIALS AT 25°C									TABLE 1 (Continued)							
•	(51)	Material	Atomic Number	Density g/cm ³	Band- gap eV	Melting Point °C	Knoop Hardness	Crystal Structure	Ionicity	Dielectrie	E _{pair} eV	Resistivity (25°C) Ω-cm	Electron Mobility cm ² /V · sec	Electron Lifetime sec.	Hole Mobility cm²/V · sec	Hole Lifetime sec.	μτ(e) Product cm ² /V	$\mu \tau(h)$ Product cm ² /V
•	InP	Ge Si	32 14	5.33	0.67	958 1412	692 1150	Cubic Cubic	0	16 11.7	2.96 3.62	50 up to 104	3900 1400	>10 ⁻³ >10 ⁻³	1900 480	1×10^{-3} 2×10^{-3}	>1 >1	>l ≈l
•	CdTe, CZT?	CdTe CdZnTe CdSe	48, 52 48, 30, 52 48, 34	6.2 ≈ 6 5.81	1.44 1.5–2.2 1.73	1092 1092-1295 >1350	45	Hexagonal Hexagonal	0.61 0.6	11 10.6	4.43 5.0* 5.5**	109 1011 108	1100 1350 720	3×10^{-6} 10^{-6} 10^{-6}	100 120 75	2×10^{-6} 5×10^{-8} 10^{-6}	3.3×10^{-3} 1×10^{-3} 7.2×10^{-4} $\approx 10^{-4}$	2×10^{-4} 6×10^{-6} 7.5×10^{-5}
•	GaAs?	HgI ₂ TIBrI GaAs	48, 30, 34 80, 53 81, 35, 53 31, 33	≈ 3.5 6.4 7.5 5.32	1.7-2.7 2.13 2.2-2.8 1.43	1239-1320 250 (127†) 405-480 1238	<10 40 750	Tetragonal Cubic Cubic	0.67 0.23	8.8 12.8	4.2 4.2	10 ¹³ 10 ¹⁰ 10 ⁷	100 8000	10 ⁻⁶ 10 ⁻⁸	4 400	10 ⁻⁵	10^{-4} 9 × 10^{-5} 8 × 10^{-5} 7 × 10^{-5}	4×10^{-5} 4×10^{-6}
•	Thin diamond?	ini GaSe diamond TIBr Bhi	49, 53 31, 34 6 81, 35 82, 53	5.31 4.55 3.51 7.56	2.01 2.03 5.4 2.68	351 960 4027 480 402	10 ⁴ 12	Orthorhombic Hexagonal Cubic Cubic	0.8 0.53 0 0.81	26 8 5.5 29.8	4.5 13.25 6.5 4.9	10 ¹²	75 2000 6 8	5×10^{-7} 10^{-8} 2.5×10^{-6} 10^{-6}	45 1600 2	2×10^{-7} <10 ⁻⁸	3.5×10^{-5} 2×10^{-5} 1.6×10^{-5} 8×10^{-6}	9×10^{-5} <1.6 × 10^{-5} 1.5 × 10^{-6}
•	SiC?	InP ZnTe HgBrI	49, 15 30, 52 80, 35, 53	4.78 5.72 6.2	1.35 2.26 2.4-3.4	1057 1295 229–259	535	Cubic Cubic Orthorhombic	0.38	12.5 9.7	4.2 7.0** 4	10^{7} 10^{10} 5×10^{13} 10^{12}	4600 340	1.5×10^{-9} 4×10^{-9} 6.8×10^{-9}	150 100	$< 10^{-7}$ 7 × 10^{-7} 4 × 10^{-6}	4.8×10^{-6} 1.4×10^{-6} 1×10^{-6} 6.8×10^{-8}	$<1.5 \times 10^{-5}$ 7 × 10 ⁻⁵ $<1 \times 10^{-7}$ 2 × 10 ⁻⁸
•	Others?	a-Se BP GaP CdS	34 5, 15 31, 15 48, 16	4.3 2.9 4.13 4.82	2.3 2 2.24 2.5	d1400 1750 1477	4700	Cubic Cubic Hexagonal	0 0.01 0.58	6.6 11 11.6	7 6.5** 7.0** 7.8**	10 ¹² 1	.005 10 120 300	10 ⁻⁶ 10 ⁻⁹	.14 120 50	10-6	5 × 10-9	1.4 × 10 ⁻⁷
		SiC AlSb PbO Bil ₁	14, 6 13, 51 82, 8 83, 53	3.2 4.26 9.8 5.78	2.2 1.62 1.9 1.73	886 408		Cubic Cubic Hexagonal			9.0** 5.05 6.47 5.5**	<10 ⁴	400(α) 300		400			
		ZnSe Note: N	30, 34 Materials are	5.42 listed in o	2.58 rder of decr	reasing $\mu \tau(e)$	at room te	Cubic mperature.		8.1	8.0**		100	Sem Tem Nuc	iconductors perature lear Detecto	for Room r Applicati	SEMICO AND SF ONS Volume	ONDUCTORS EMIMETALS 43

* Estimated for 20% Zn.

**Estimated.

†Solid/solid phase transition.