FCC-ee electronics challenges and requirements

FCC-ee accelerator program

Parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr] 4 IPs	87	9.3	3.5	0.65
beam lifetime (rad Bhabha + BS+lattice)	8	18	6	10
	4 years	2 years	3 years	5 years

Lumi is the highest during the giga-Z program. However, not every BC contains a Z-boson₂

Hard scatter and background rates

- At the Z pole, expected total ee collision/event rate is ~200 kHz. The bunch crossing rate is 50 MHz.
- Incoherent pair production is the main source of beam backgrounds.

Physics process	Rate (kHz)
Z decays	100
$\gamma\gamma \rightarrow \text{hadrons}$	30
Bhabha	50
Beam background	20
Total	~ 200

https://arxiv.org/pdf/2111.04168v1.pdf

Breit-Wheeler

See https://indico.cern.ch/event/1307378/contributions/5727164/attachments/2791569/4869322/Bedeschi_Annecy_2024.pdf and https://indico.mit.edu/event/876/contributions/2856/attachments/1066/1752/Trigger%20and%20DAQ%20at%20FCC.pdf https://indico.cern.ch/event/1298458/contributions/5987291/attachments/2875496/5035607/Silicon%20tracker%20optimisation_Armin%20Ilg.pdf

Detector concepts

- All the detectors are instrumented with an innermost Si trackers. These are challenging to readout and may require fixed-latency triggerring.
- The innermost layer is subject to the incoherent pair production.

- Full silicon vertex + strip tracker
- CALICE-like 3D-imaging highgranular calorimetry with Si-W for ECAL and Sci-iron for HCAL
- Muon system with RPCs
- Coil outside of calorimeters

- Silicon vertex + ultra-light tracker
- Monolithic dual readout calorimeter with Cu-fibers (possibly augmented by dual-readout crystal ECAL)
- Muon system with μ-RWELL
- Coil inside calorimeters

- Silicon vertex + ultra-light tracker
- High granularity noble liquid ECAL (LAr or LKr with Pb or W absorbers)
- CALICE-like or TileCal-like HCAL
- Muon system
- Coil outside of ECAL

From: https://indico.cern.ch/event/1298458/contributions/5975666/attachments/2874286/5033190/DetectorRequirements_Zhu.pdf

Required tracking performance

- The tracker is required to have micron accuracy of single point resolution.
 - \rightarrow Small pixels and minimal inert material.
 - \rightarrow Air-cooled MAPs
- The particle ID can greatly benefit physics capabilities of the detectors (e.g. improve charm jet tagging)
- ToF measurements can be used for the PID.
- Tentatively, the vertex detectors are not capable of accurate timing measurements.
 - Can these be useful for physics or background rejection?
- The low material budget caps the power dissipation due to the need for air-cooling (~200 mW/cm2) for the Si detectors
- An outermost timing layer is not restricted by the power cap.
- The 20 ns bunch crossing rate during the giga-Z does not allow power pulsing/gating.

MAPS for FCCee trackers

- See <u>https://indico.cern.ch/event/1417976/timetable/</u>
- These sensors are flexible and self-supporting.
- They can be as large as a wafer.
- MOSAIX ASIC uses 65nm CMOS and the fill factor is 93%.
- The power consumption is almost maxed out
- There are long data transmission lines from the pixel matrix to the end-caps periphery.
- The readout of the pixel matrix is optimized and there is Half-layer: silicon chip, 50 μm no on-chip data processing.
 Support: ERG (R
- The chip does not have enough output bandwidth for data taking at FCCee.

support: ERG (RVC) Duoce[®] width for <u>Chip endcap</u> <u>Air freestream velocity = 8mb Velocity = 8mb</u>

Large MAPS challenges

- 1. Can we have triggerless readout?
 - Frees space on-chip (no buffering)
 - Requires fast data link from the chip to DAQ (e.g. Si-pho fiber to chip)
 - Requires enough power to serialize the data
- 2. Long and large clock distribution circuit. Is the clock jitter reasonable?
- 3. Power distribution (IR drops, noise).
- 4. Will there be enough power budget for timing measurements (TDCs, clock, data movement, etc)?
- 5. Will we need more on-chip bandwidth to move data to the periphery?
- 6. Will there be enough off-chip link bandwidth to transmit the extra timing data?
- 7. Do we need smaller CMOS feature size for FCCee MAPS?
- 8. Can we use on-chip data processing to reduce the power and on-chip and off-chip bandwidth?

Outlook

- People have started looking at the impact of track timing on the physics capabilities of the experiments.
 - PID for Charm jet tagging.
 - Are there more applications?
- Would we benefit from accurate detector simulations for all the detector concepts?
- Do the vertex detectors benefit from the 4D tracking?
- Is it technically feasible to do 4D tracking with the expected technologies (CMOS/MAPS, fiber-optical data links, etc) ?
 - Clock distribution to-chip and on-chip
 - Power delivery on-chip and to-chip