
γγ Simulations for XCC and 15 TeV

10 TeV Beam-Beam Meeting

Tim  Barklow
May 28,  2024 



2

γγ Collider Basics



Photon Collider Basics

Photons from a high powered laser are scattered off the high energy beam electrons of a linear collider between 
the final quadrupole and the interaction point.  The compton scattered photons acquire the momenta 
of the high energy electrons and collide at the i.p. with the compton scattered photons from the opposing beam.  
The  luminosity will be given by the geometric  e eγγ + − luminosity times the compton conversion efficiency squared.
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The XCC is very different from previous γγ collider concepts 
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Simulation of 15 TeV γγ Collider
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Replace 62.5 GeV C3 e- beam w/ 7500 GeV PWFA e- beam  
and simulate γγ Collisions using CAIN MC

γγ PWFA
Round
15
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2
non-linear QED  =15.2   ξ

x=4.8   adjust parameters to get ~ 100 % conversion w/ linear QED  
Start with x=4.8 because this was considered the typical γγ collider x value before this study was performed



x=4.8   ,  parameters with ~ 100 % conversion w/ linear QED  
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Halfway through the collision CAIN complains:

(SUBR.COHPAR) Algorithm of coherent pair generation wrong.
Call the programmer prob,pmaxco=   8.309E-01  8.000E-01

Solution: 

number of macro particles produced per coherent beamstrahlung photon = 1   0.01
number of pairs of macro particles produced per coherent e+e- pair = 1   0.0001
number of macro particles produced per incoherent particle = 1  0.01

15 TeV and x=40       Turn on coherent processes  
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e- γ collisions at Eeγ=140 GeV    I.P. geometric  e- σx,σy=5.1 nm
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Summary 

i

Working with a fixed, specific set of round electron beam parameters (varying only the beam energy as

  Not surprisingly, it is not str

 

aightforward to extrapolate a
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25 G V
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  ols γγ• =

cm cm

cm cm

der to 10 or 15 TeV
  A value of 4.8 requires  E =18.2 TeV for E =15 TeV  and has very broad lumi spectrum

  A value   40 requires  E =15.6 TeV for E =15 TeV .  But when coherent 
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      processes are considered, EM fields produced by the tightly focused  beams lead to significant 
       coherent beamstrahlung and  pair-production for moderate values of   This is excabera

e
e e x

−

+ − ted by the 
      produced  which pinch the  beams leading to even higher EM fields.  These effects serve to diminish 

ˆ      the  luminosity in the top 20% of the  distribution.
  A multi-TeV 

e e

sγγ

γγ

+ −

• 5 collider with extremely large values of 10 ,  corresponding to soft x-ray Compton 
       scattering, does not suffer as much from coherent processes (need to investigate why -- first guess is that i

x ≈
t is 

       connected to the relatively small, 10% Compton conversion efficiency).   It also gives the largest 
       top 20% luminosity among the configurations considered so far, and has an /XCCe e+ − -like luminosity 
       spectrum with a relatively narrow peak near the maximum center-of-mass energy
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Backup
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Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression 

(0,0)
CAIN

 center of charge distribution= (0,0)
CAIN

 EM field minimum=(0,0)
Bassetti-Erskine

 center of charge distribution=

/ xx σ / xx σ
/ xx σ/ yy σ / yy σ / yy σ

|E
| (

V/
m

)
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Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression 

Bassetti-Erskine 1 Gaussian Bassetti-Erskine 2 Gaussians
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Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression 

Bassetti-Erskine 1 Gaussian vs Bassetti-Erskine 2 Gaussian for γγ collision
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Replace CAIN EM FFT EM Field Calculation with Bassetti-Erskine 2d Gaussian Expression 

2 Gaussian Bassetti-Erskine vs CAIN EM Field  
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Wenlong Zhang Also Sees Pinching in e-e- Collisions
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2  The  luminosity is  where  is the  luminosity and  is the Compton conversion efficiency. 

  0.2,  so XCC is basically an  c

4.2 km accommodates =380 GeV with  120 MV/m. 
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  The  luminosity -- and therefore the  luminosity -- is optimized and maintained using  beam-beam 
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ILC/C3 vs. XCC Physics Comparison
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XCC achieves model independence through measurement of  using 

monochomatic  electron in  during 380 GeV  run.e e H s
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Machine Detector Interface at XCC

Backgrounds from , ,  produced at Compton IP's and primary IP:

(1)  Vertex detector inner radius (incoherent  pairs from 
          primary IP - same situation as  linear colliders)
(2)   Beam

e e

e e
e e

γ+ −

+ −

+ −

0
pipe X  (moderate soft X-ray flux from Compton IP's | cos | 0.95)

(3)   Forward boundaries of the main tracker/calorimeter and solid angle coverage
          of  forward detector (large hard X-ray flux fr

θ <

om Compton IP's | cos | 0.95)
(4)   Aperture of final quad ( , ,  from primary & Compton IP's must pass through 
         this aperture) 
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Vertex Detector Inner Radius

3

Incoherent  pair production
                C -250

e e+ −

( ) vs. R  at  6.25 cm E e z± =

 from Compton IP
               XCC
e e+ − Incoherent  pair production
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Incoherent  pair production
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Incoherent  pair production
                C -250

e e+ −

CAIN  Simulation  assuming 5 T Solenoid 

( ) vs. R  at  6.25 cm N e z± =

R(cm) R(cm) R(cm)

R(cm) R(cm)

SiD Vtx Inner Rad=1.5 cm
XCC Vtx Inner Rad=1.9 cm
should be OK 
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X-rays from Compton IP's
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X-rays handled by adding 0.1% - 1.0% X  heavy element to Beampipe for | cos | 0.8

Required absorber increases to 5.0% X  at | cos | 0.93

Complicated design for 0.95 | cos | 0.99 ;  probably can't instrumen
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Moderate flux of soft (few keV) X-rays in central region
Number and energy of Compton IP X-rays increases rapidly in the forward region
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 at 380 GeVHH sγγ → =

XCC

LHC

  At 0.4 fb, the cross section for  at =380 GeV 

     is twice that of   at =500 GeV, so that the 
     XCC Higgs self-coupling measurement starts out with a 

    2  statistical advantage 

HH s

e e ZHH s

γγ
+ −

• →

→

invisible

over 500 GeV  colliders.

  The  final state is simpler than .  N.B., the associated 
       boson in  production of the Higgs is great for 
      measurements such as   &  , b

ZZ

e e

HH ZHH
Z e e

+ −
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•

Γ Γ ut can be a  

      complication in other instances. 

  Interesting interference between box diagram and s-channel: 
      constructive at XCC vs. destructive at LHC
•



KB Mirror Focusing 
for 𝜸𝜸𝜸𝜸 Collider

David Fritz



Mirror Damage Limit (single pulse)

• Boron carbide is the highest damage 
threshold coating and is used for this 
calculation

• Assumes the incident fwhm beam size 
is ½ the substrate length

• No safety factor is included in these 
calculations – 5-10x below this value 
should be planned for

• Calculation is weakly dependent on 
incident angle below the mirror cutoff 
(0.3 deg AOI used)

A large mirror (> 1 m) is needed to survive ~ 1 J pulse energies



Mirror Reflectivity



Some Possibilities for ≤70 nm FWHM Focal Size (Round 
Equivalent) 

• KB pairs are needed to focus the beam
• If source is round, then KB mirrors will create an elliptical focus
• Round equivalent = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ ℎ𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜
• Things improve with photon energy for the KB optics:

• Damage
• Reflectivity --> less absorbed power
• Focal size
• Rayleigh range



David Fritz’s Summary
• Large mirrors (> 1 m) are needed for 1 J per pulse energy

• 1 m FEL quality substrates produced today
• 1.5 m substrates produced for synchrotrons
• > 1 m FEL quality substrates would require development with industry but not R&D

• > 1 km source to KB optic distance is desirable
• FEL average power is a new regime (6.5 kW)

• This requires an engineering study 
• Very grazing angles help since the most straight forward approach is to absorb less in the 

substrate
• Another reason to consider beyond state-of-the-art substrates sizes (e.g. 2 m or beyond)
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SX8QD0 KB Mirrors

L*=1.5 m + 3.5 m QD0 => 5 m

Examine mirror parameter assuming 5m from edge of KB mirror to the IP

Also consider L* and QD0 shortened such that there is 4m from edge of KB mirror to the IP



XCC Schematic with 1.4 km line between XFEL and KB mirrors
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Detector

10 m



LCLS-I   Summary of ELEGANT simulation 
of Linac Plus 120 nm 1 nC injector

100 mJ/pulse great for XCC R&D.  Is there genuine synergy with photon
science for other applications of low emittance injector?

Preliminary results: 
• >110 mJ of 1 keV X-rays within 20 undulators 
• <0.01% FWHM bandwidth (0.18% rms) 

Caveats:
• Simulation done with pure seed so FWHM bandwidth may be 

a bit larger with a full simulation (full sim: first stage, clean 
spectrum, second stage)

Resistive wall wake fields
• increased FWHM bandwidth by 40%
• decreased pulse energy by 12%
• Increasing undulator chamber gap from 5 to 7 mm could halve 

wake field strength.
• Shaping the beam (shortening) may shape space charge wake

740 pC 110 mJ

Most 
energy 
within 
0.01% BW 

Radiation 
size (m)
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