Update on (Optimal Transport) Displaced Track Classification

Nathan Suri SLAC-Yale Weekly Meeting 4/30/24

Samples Overview

No Pileup

Pileup Inclusive

Phase 0: Track-by-track BDT (XGBoost)

Parameters

n_estimators=2

max_depth=4

learning_rate=0.5

objective='binary:logistic'

• Signal data includes pileup now

XGBClassifier

Feature Importance

Phase 1: Track-by-track Transformer (ABCNet)

Architecture

https://github.com/ViniciusMikuni/ABCNet/tree/mast er

Total params: 160,117

Trainable params: 159,021

Non-trainable params: 1,096

[Trained using full data without pileup]

Thoughts

• BDT

- Overall, task seems (more than) viable even with the inclusion of pileup in signal samples
- Results generalize well for more signals so far
- Supervised Transformer
 - Similar results found to the BDT
 - Transformer results can be tuned via thresholds
 - Sigmoid -> Hard Sigmoid?

Tasks

• Data

- Generate QCD sample with pileup
 - Option 1: Use synthetic pileup via HGMM
 - Option 2: Use Delphes with high stats pileup file
 - Sam mentioned that they were passed over to the Columbia group

- Training
 - Apply data preprocessing such as pT > 0.5 GeV, more rigorous normalization
 - Optimize supervised transformer
 - Review both autoencoder and OT approaches with new data formats
- Logistics
 - Draft slides for ATLAS ML workshop

Backup Slides

Pileup Inclusive

Feature Importance (without Do)

Removal of Do Feature

Feature Importance (with t)

Inclusion of Timing Feature

Last Week (No Pileup)

Phase 0: Track-by-track BDT (XGBoost)

Feature Importance

Phase 1: Track-by-track Transformer (ABCNet)

