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The End Goal
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Look at these circuits and intuitively understand what they do
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The Approach
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Break circuits down into modular blocks
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The Steps

1. Small Signal DC Analysis

a. The three types of building blocks

i. I → V and V → Converters

ii. Impedance Transformers

b. How to quickly solve any circuit with no feedback loops

c. Designing circuits with building blocks

2. DC Biasing And Sizing Transistors

a. Device equations and gm/Id

b. How to size transistors to get a desired gm

c. Current sources

3. AC Analysis And Feedback

a. Charge-sensitive amplifiers and diode readouts

b. The open-loop intrinsic gain stage

c. Adding capacitive feedback

d. Working with multi-stage amplifiers
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Three types of building blocks

Small Signal DC Analysis



The Three Types of Building Blocks
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First step: V → I and I → V
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MOSFET Small Signal Models
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gm Vgs r0 r0gm Vgs gmb Vgs

gm Vgs

Ideal 
Transconductor

Output 
Impedance

Body
Effect

Same model for both:



MOSFET Small Signal Models
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gm Vgs r0 r0gm Vgs gmb Vgs

gm Vgs

Ideal 
Transconductor

Output 
Impedance

Body
Effect

We’ll start with ideal transconductor

Same model for both:



Converting between current and voltage
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Chaining stages together
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Chaining stages together
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Chaining stages together
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Chaining stages together
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Chaining stages together
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Understanding Impedance Transformers
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Consider a generic source of voltage
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It takes “effort” to emit a current
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The more current is taken from the voltage source, the more it struggles to maintain its voltage
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It takes “effort” to emit a current
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Voltage v

Current i

The more current is taken from the voltage source, the more it struggles to maintain its voltage



So a voltage source has some impedance
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Once too much current is drawn from the voltage source, the resistor cancels it out



Similarly, it takes “effort” to maintain a voltage
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Current i

Voltage v

The more voltage is needed, the more the source struggles to maintain it. Once too much 
voltage is applied, the current is controlled by the resistor, not the current source.

Load

V>0



Can we improve the “strength” of a current source?
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Sources of voltage and current 
are never ideal



What is a “strong” source of current?
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What is a “strong” source of current?
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A weak source is unable to maintain its current at high voltages

VoltageCurrent Low voltage → No Problem



The drain of the transistor can freely “wiggle” while the source remains at a fixed voltage.

The common gate stage provides “isolation”
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MOSFET Small Signal Models
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gm Vgs r0 r0gm Vgs gmb Vgs

gm Vgs

Ideal 
Transconductor

Output 
Impedance

Body
Effect

We’ll use this model for the rest of the tutorial

Same model for both:



The current buffer
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Deriving the downwards impedance
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Deriving the downwards impedance
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Deriving the upwards impedance
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Deriving the upwards impedance
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Intuition: The transistor arrow is the low-impedance port
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Rup

Rdown

RD

RS

The source draws-in current 
with its low impedance.

The drain re-emits it with high 
impedance.
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How to quickly solve any circuit with no feedback 
loops

Small Signal DC Analysis



The key diagram
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Example walkthrough
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Designing circuits with building blocks

Small Signal DC Analysis



The three most used building blocks
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The source draws-in current 
with its low impedance.

The drain re-emits it with high 
impedance.



But there are more!
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But there are more!
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Degenerated
V → I

Converter

V
in

The resistor decreases 
the gain, but increases 
the bandwidth

(See feedback coming up)



But there are more!
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R
up

R
down
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The feedback transistor “boosts” 
the impedance of this current 
buffer by a factor gm*r0



Device equations and gm/Id
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DC Biasing And Sizing 
Transistors



Back to the MOSFET I-V equation
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Key Observation
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Current is linear in the width (intuitive)



Consequences: gm/Id is a constant ratio!
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gm/Id only depends on how the transistor is biased! It is independent of W



Use gm/Id to describe how a transistor is biased and 
operating
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Design Methodology



gm/gds = gm*ro → Intrinsic Gain Plots
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fT = gm/Cgg/2pi → Transit Frequency Plots
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Id/W → Current Density Plots
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Extrinsic Capacitances ratios
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How to size transistors to get a desired gm
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DC Biasing And Sizing 
Transistors



Typical situation: We want some gm
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Step 1: Obtain gm/Id, L
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We will cover later how their optimal values can be found from noise and bandwidth 
considerations.



Step 2: Given gm/Id, we can find the current density, etc
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Step 3: Given the ratios, we can find transistor widths, etc
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Current sources
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DC Biasing And Sizing 
Transistors
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Our first design exercise

Generic 180nm PDK / 1.8V Supply
No Deep N-Wells: MOSFET body connected to GND/VDD
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Intermission



Part 1: Intrinsic Gain Stage

Task: Designing An Open Loop Intrinsic Amplifier

● Id< 5uA

● CL=250fF

● Vout = 0.9V at DC (see next slide)

● Goals:

○ Gain-Bandwidth Product: >16MHz

○ Maximize Gain

Methodology:

1. By hand: derive gain in terms of gm, gds then derive the expression of the pole and the GBW product

2. Calculate gm to obtain needed GBW

3. Pick an appropriate gm/gds and L to achieve desired gain. 

4. Given gm/gds and L, we’ve fixed gm/Id, fT and Id/W.

5. Using Id/W, find the needed W

6. Run a simulation
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Sample Intrinsic Gain Stage Implementation
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100Gohm

1F

VCVS: Gain 10k

Note: The auxiliary circuit is an ideal op-amp connected to a lowpass filter. The lowpass filter only lets the DC signal 
through. The op-amp biases the nMOS such that VOUT = 0.9V in DC

0.9V to set VOUT 



Part 2: Cascoded Stage

Task: Designing An Open Loop Amplifier

● Id< 5uA

● CL=250fF

● Vout = 0.9V at DC (see previous slide)

● Goals:

○ Gain-Bandwidth Product: >16MHz

○ Maximize Gain

Methodology:

1. Simply add a cascode with the same dimensions of the input transistor

2. Derive the equations 

3. See what maximum gain can be achieved

4. Run a simulation. You may need to try different voltages for V
c
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Charge-sensitive amplifiers and diode readouts
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AC Analysis And Feedback



What have we been working towards?
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A*∫dt Backend
Circuits



What have we been working towards?
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A*∫dt Backend
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How does a particle sensor look like?
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The full Charge-Sensitive Amplifier (CSA) system
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Ideal CSA with A=∞
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Note: How much gain is good enough?
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Backend
Circuits

CF

Ciniin

-A

CL

For a CSA, the DC loop gain is typically set by C
in

. We have a current divider between C
in

 and C
F
. 

While we want all current to go into C
F
, some of it will go into C

in
. The amplifier “multiplies” the 

value of C
F
, to get  A*C

F
 >> C

in



We are ready to give the full CSA specs

● Diode Input Capacitance: 100fF
● Max processing time 7us → Settling time at ε

d
=0.01% <100ns → Bandwidth > 15MHz

● Max signal 25fC, Max output swing of 1V → Gain 40mV/fC
● Static Error: ε

S
 < 0.1%

● Input-Referred Noise: <150e-
● Use minimum current consumption (max 12uA)
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Static Error: How far does the 
closed-loop gain deviate from just an 
ideal C

F
 at DC?

Dynamic Error: At what fraction of the 
final output do we consider the input 
fully settled?



The open-loop intrinsic gain stage
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AC Analysis And Feedback



The open-loop intrinsic gain stage
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Adding capacitive feedback
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AC Analysis And Feedback



Single-stage CSA
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Single-stage CSA: Ideal Gain
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Single-stage CSA: The key formula
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Single-stage CSA: Loop gain
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Single-stage CSA: The key formula
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Single-stage CSA: The key formula
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Bandwidth of the closed-loop system is the bandwidth of the open-loop gain times the 
DC gain of the open-loop. (For single-pole amplifier)



Single-stage CSA
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Working with multi-stage amplifiers
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AC Analysis And Feedback



Single-stage CSA

91

Ciniin CLRL

Ibias

vout

CF

gm



The same formula hold for multiple stages
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How to estimate the closed loop bandwidth
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For a single pole system, we had:

We note:

Review of single-pole feedback

For:

Thus:



How to estimate the closed loop bandwidth
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A general approach

For ANY type of feedback system, we may write:

It’s pretty accurate! See comparison table assuming two-pole system with different Qs:

Q = 0.4

DC Open-Loop Gain L0 Ratio 

10 1.6312

100 1.5595

1000 1.5576

10000 1.5556

100000 1.5549

Q = 1

DC Open-Loop Gain L0 Ratio 

10 1.5666

100 1.5539

1000 1.5569

10000 1.5556

100000 1.5549



Part 3: Intrinsic Gain Stage with feedback

Task: Designing intrinsic CSA Amplifier

● Id< 12uA

● Cs=100fF

● CL=250fF

● Max signal 25fC / Max signal output swing 1V

○ Cf = 25fC/1V

● Size Cgs=0.1(Cf+Cs)

● Goals:

○ Gain-Bandwidth Product: >16MHz

○ Maximize Gain

○ Determine what is the minimum static error you can reach

Methodology:

1. By hand: derive Loop gain in terms of gm, gds then derive the expression of the pole and the GBW product

2. Calculate the minimum gm then pick a value of gm/Id compatible with power constraints.

3. Pick an appropriate L to achieve maximum gain. 

4. Given gm/Id and L, we’ve fixed, fT and Id/W.

5. Using Id/W, find the needed W.

6. Run a simulation (check stability)
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Vout

CL

Cs

Cf

Iin



Feedback resistor used to set DC bias only

Sample Implementation
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Very Large



Part 4: Cascoded Stage

Task: Designing a CSA Amplifier (ideal load)

● Id< 12uA

● Cs=100fF

● CL=250fF

● Max signal 25fC / Max signal output swing 1V

○ Cf = 25fC/1V

● Size Cgs=0.1(Cf+Cs)

● Goals:

○ Gain-Bandwidth Product: >16MHz

○ Determine what is the minimum static error you can reach

Methodology:

● Simply add a cascode with the same dimensions of the input transistor

● Derive the equations 

● Run a simulation (check stability)
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Part 5: Cascoded Stage

Task: Designing a CSA Amplifier (active load)

● Id< 12uA

● Cs=100fF

● CL=250fF

● Max signal 25fC / Max signal output swing 1V

○ Cf = 25fC/1V

● Size Cgs=0.1(Cf+Cs)

● Goals:

○ Gain-Bandwidth Product: >16MHz

○ Verify that the Static error below  is below 0.1%

Methodology:

● Simply add two  cascode pmos (for simplicity use the same sizes of the  nmos 

branch and mirror the current in them.

● Derive the equation for the closed loop gain

● Run a simulation (check stability)
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Part 6: CSA+Shaper

Task: Designing a CSA +Shaper

1. What Shaper time constant do we need to reach an 

ENC < 150e-?

2. Does the waveform return to 0 within 7us?

Methodology:

3. Use the ideal shaper.

4. Plot the total output noise r.m.s. 

5. Calculate the ENC

6. Vary the shaper time constant until ENC <150e-
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Feedback Noise
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Bonus/Extra



Noise from the first transistor
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AC Analysis And Feedback



Refer All Transistor Noise To Amplifier Input
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Refer All Transistor Noise To Amplifier Input
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Cin CLRL

Ibias

vout

CF

Perform the same ideal feedback analysis

(virtual ground)

i
feedback



Noise Feedback (For simplicity treat as single pole)

104

Cin CLRL
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vout
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Unity gain frequency of open loop
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Hand Exercises



Derive The DC Gain in terms of g
m1

, g
gds1

, g
m2

 etc
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VN

VP

Vin

Vout

Do NOT use KVL/KCL. Only the previous impedance formulas and current dividers

Vin

VP

Vout

No body effect

M1

M2

M1

M2

M3



Reminder: A current source acts ideally when it is at 0V, so have i
out

 come from ground.

Derive the transimpedance of the degenerated common source
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V
in

i
out

R

i
out

R
dow

n

i
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No loss due to the 
current source 
driving a voltage



Assume all transistors have same gm and r0. Use only the impedance formulas found in the 
slides. The value for R

up
 for a “super” common gate stage is provided

Finale: Find DC gain without KVL/KCL
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V
in

Vout

R

R
I

Methodology:

1. Find the equivalent impedances R
down

 using the 
common gate formulas from the handout.

2. Find the equivalent impedance R
up

 using the 
“super” common gate formulas from the handout.

3. The current injected by the input transistor into 
the node V

x
 is given by the formula derived in the 

previous exercise.
4. Part of this injected current will flow down, and 

part of it will flow up into the output load. The ratio 
of how much current will flow up is given by the 
current divider ratio of R

down
 and R

up
.

V
x

i
up

Rdown

Rup



Formulas
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The 3dB frequency occurs when 

For a one pole system, the pole is the 3dB frequency. For a two pole system, we 
can approximate the 3dB frequency by the lowest frequency pole.

Rup

Rdown

RD

RS

R
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Rdown
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