The LUXE Detector Systems and their Synergies with E320

SLAC FPD Seminar

Antonios Athanassiadis, on behalf of the LUXE collaboration 11th of June 2024

Deutsches Elektronen-Synchrotron DESY

EORSCHUNG | DER JEHRE | DER BILDUNG

DESY.

CLUSTER OF EXCELLENCE

OUANTUM UNIVERSE

About DESY

Deutsches Elektronen-Synchrotron

- In operation since 1964
- Discovery of the gluon at HERA
- Many accelerator facilities active
- DESY II, PETRA, Eu.XFEL, FLASH,...

- Particle accelerators
- Particle physics
- Photon science
- Astrophysics

What is LUXE?

New experiment at DESY Hamburg & Eu.XFEL to probe strong-field QED – An uncharted regime

In this seminar:

- What is strong-field QED?
- What are the features of LUXE?
- What are the key technologies?
- What are the synergies to E320?

What is strong-field QED and why is it interesting?

Where do we obtain strong fields?

- Magnetars
 - (Neutron stars with $B > 10^{10} T$)
- Heavy ion collisions
- Strong lasers $\rightarrow \gamma\gamma$ collisions
- Beam-beam effects
- Crystals (<u>NA63</u>)

QED and the vacuum

The Quantum Electrodynamics is one of the most well-tested physics theories!

Strong-field QED

QED non-linear when field polarized

- If work of ext. field > rest mass of pair
 - \rightarrow Schwinger-Limit ϵ_{cr}
 - \rightarrow Field-induced Breit-Wheeler pair creation
- Existing fields are too small
 → BUT el. field not lorentz invariant

$$\mathcal{E}_{cr} = \frac{m_e^2 c^3}{e \hbar} = 1.32 \cdot 10^{18} \, V/m$$

$$\mathcal{E}_{rest\,fr.} = \gamma \mathcal{E}_{lab\,fr.}$$

Hawking radiation analogy

Particle-antiparticle pair production in vicinity of strong gravitational vs. electromagnetic field!

Strong-fields with relativistic probes

Electron-Laser collisions

Strong-fields with relativistic probes

Gamma-Laser collisions

Strong-fields with relativistic probes

Breit-Wheeler pair production $\gamma_C + n\gamma_L \rightarrow e^+ + e^-$

Important parameters

$\boldsymbol{\xi}$ is probe-background coupling

- Here: $\xi \sim$ laser intensity
- $\xi > 1 \rightarrow$ non-perturbative regime

χ is background field to ϵ_{cr} ratio

- Here: $\chi \sim$ laser energy transfer
- $\chi > 1 \rightarrow$ non-linear quantum effects

 $\boldsymbol{\eta}$ is dimensionless energy of collision

$$\xi = \frac{m_e \mathcal{E}_L}{\omega_L \mathcal{E}_{cr}}$$

$$\chi_e = (1 + \cos\theta) \frac{E_e}{m_e} \frac{\mathcal{E}_L}{\mathcal{E}_{cr}}$$

$$\eta = \frac{\chi}{\xi}$$

Different combinations of ξ and χ result in different types of non-linear behavior

Non-linear Compton scattering

Within strong fields

- Electron obtains larger eff. mass
 - \rightarrow Compton edge shift with ξ
 - \rightarrow Higher harmonics appear

Goal at LUXE: Verify predictions

Breit-Wheeler pair production

LUXE will be the first experiment to measure Breit-Wheeler pairs with real photons

Features of the LUXE experiment

The European XFEL

European X-Ray-Free-Electron-Laser

- In operation since 2017
- Linear electron accelerator
 - 1.9 km
 - 17.5 GeV max.
 - 2700 bunches at 10 Hz
- X-Ray photons for 6 instruments
 - Self-amplified spontaneous emission
 - 0.25 keV 25 KeV

The European XFEL

European X-Ray-Free-Electron-Laser

- In operation since 2017
- Linear electron accelerator
 - 1.9 km
 - 17.5 GeV max.
 - 2700 bunches at 10 Hz
- X-Ray photons for 6 instruments
 - Self-amplified spontaneous emission
 - 0.25 keV 25 KeV

Accelerator performance

- $(\sigma_x, \sigma_v) = (9.3, 8.1) \,\mu m$
- Pulse length: 1...130 fs
- Shot to shot position: ~1µm
- Energy variation <0.1%

LUXE at the European XFEL

The LUXE laser

Laser parameters:		
Active medium	Ti:Sa	
Wavelength	800 nm	
Crossing angle at IP	17.2°	
Pulse length	30 fs	
Spot size	> 3 µm	
Power	40 - 350 TW	
Peak intensity	13 - 120 *10 ¹⁹ W/cm ²	

LUXE experimental setup(s)

LUXE experimental setup(s)

LUXE experimental setup(s)

Goal: Flux and energy measurements of e-, e+, y

- Testbed for a wide range of novel technologies
- Two complementary detector technologies per location
 - \rightarrow Cross-calibration possible
 - \rightarrow Low systematic uncertainties

Technologies and detectors

Electron & Positron detectors

Positron Detection System

Positron Detection System

Positron tracker

- Silicon pixel tracker of ALPIDE type
- Pitch size: 27x29 µm²
- Resolution: 5 µm
- Efficiency: 98%

Positron Detection System

Electron Detection System

31

Electron Detection System

Scintillating screen and Cherenkov counter

- Scintillator screen & camera system
 - \rightarrow 500 μm position resolution
- Cherenkov counter system
 - \rightarrow 4 mm channel segmentation

32

Electron Detection System

Light yield measured in detector at different straw positions

Light yield measured of different screens

250

200

150

100

50

0

signal amplitude [mV]

Synergies with E320

Future collaborations

- Electron Detection System measurements of Compton electrons after shutdown
- Positron Tracker (WIS) installation this summer
- Gamma Beam Profiler (INFN) installation in discussion

First observation of real Breit-Wheeler pairs

Many different detector technologies optimized for precision measurements

E320 successfully probes strong-fields

First observation of real Breit-Wheeler pairs

Many different detector technologies optimized for precision measurements

E320 successfully probes strong-fields

First observation of real Breit-Wheeler pairs

Many different detector technologies optimized for precision measurements

E320 successfully probes strong-fields

First observation of real Breit-Wheeler pairs

Many different detector technologies optimized for precision measurements

E320 successfully probes strong-fields

Contact		
Deutsches Elektronen-Synchrotron (DESY)	Antonios Athanassiadis (FH-FTX)	
www.desy.de	antonios.athanassiadis@desy.de	

Backup

45

The European XFEL

LUXE at the Eu.XFEL

- Experiment will be located in the annex (built for later XFEL upgrade)
- No impact on photon science \rightarrow Only one out of 2700 bunches used
- Aim to run at 16.5 GeV with 1.5*10⁹ electrons/bunch (250 pC) and 130 fs pulse width

The LUXE laser

LUXE phase-1 detectors

The Positron and Electron Detection System

- Four-layer silicon pixel tracker (ALPIDE) with $\Delta E/E \sim 0.3\%$ and $\Delta x \sim 5\mu m$
- Highly granular electromagnetic calorimeter (Sampling silicon tungsten) with $\Delta E/E \sim 19.3\% / \sqrt{E}$ and $\Delta x \sim 780 \mu m$

- Scintillator screen and camera with Δx ~ 500µm
- Segmented Cherenkov detector with ΔE/E ~ 2% and Δx ~ 3mm

The Cherenkov detector

Reconstruction algorithm

- Single row of straws
- Compton energy reconstruction via finite-impulse-response-filter method

Convolution between

• Compton edge position
$$R_d(i) = \sum_{k=-N}^{N} h_d(k) \cdot g_d(i-k)$$

Gaussian filter

$$h_d(k) = -k \exp{-\frac{k^2}{2\sigma^2}}$$

h_M

The Cherenkov detector

Reconstruction algorithm

- Single row of straws
- Peak structure in Compton energy fit
- Electron detection efficiency drops
 periodically
- Second row of straws recovers this effect partially

The Photon Detection System

Backscattering calorimeter

- Gamma beam dump surrounded by TF-101 lead glass crystals with PMTs/LGADs used to measure particle fluxes and impact positions
- Preliminary GEANT4 simulation studies on the detector geometry ongoing
- PIER seed grant proposal is currently being reviewed
 - Across-campus collaboration possible
- Testbeam with conceptual detector idea at DESY

Gamma Detection System (GDS)

150

100

50

-50

-100

-150

-200^t

Gamma profiler (sapphire strips)

- Measure profile of y beam using sapphire strips
- Prototype tested successfully in various high-rate facility

Gamma spectrometer

100

200

 Converter target + spectrometer magnet + scintillator screens

LANEX screens

Measure γ energy spectrum

10² 10¹ 10⁷ 10⁷

106

10⁵

10⁴

 10^{3}

10²

10

600

z(cm)

500

- crystal placed around beam dump
- Measure photon flux
- Proof of concept at FlashForward

Gamma Detection System (GDS)

Gamma profiler (sapphire strips)

- y beam location and shape
- Precision measurement of laser intensity

Gamma spectrometer

Simulation-based reconstruction tested

• Energy resolution of
$$\left(\frac{\partial E}{E} < 2\%\right)$$

Gamma flux monitor

 Precision 3-10% from first simulation-based study

LUXE BSM searches

- Sensibility to BSM theories:
 - New neutral particles produced at IP
 - Milli-charged particles
 - Axion-like particles (ALPs) produced in dump

- For ALPs:
 - sensitive to masses of ~ 100 MeV
 - decay to two photons after dump
 - Calorimeter with good pointing resolution to reconstruct decay point

LUXE status

- LUXE initiated in 2017 (A. Ringwald, B. Heinemann)
- 2022: international collaboration with ~20 institutional members
- Nov 2022: LUXE officially recognized as a DESY experiment!
- Four-year construction period \rightarrow first data as early as 2027 (depending on approval time-scale)
- Extensive material on detailed design and planning available
 → TDR released in summer 2023!

Scintillator screen response

Rel. brightness	Standard	Plus	High
Manufacturer Website *	0.84	1	1.32
Best Fit	0.72	1	1.53

- Comparison of light yield at different bunch charges
 - Screens behave as expected

*http://www.mcio.com/Products/drz-screens.aspx