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Dark Matter Detection :- Finding a needle in a haystack
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Our very own 
spaceship

Non-
relativistically 

flowing through 
the WIMP wind

Energy Deposit:        
few to few tens of keV Detecting very 

small signals

 amidst a lot of 
background



Status of direct DM search
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Lower mass

Lower cross-section

Image created using   
Dark Matter Limit Plotter

➢ Understand, reduce and quantify 
background

➢ Model detector response at        
low energies

➢ Increase detector size and     
reduce background by an order of 
magnitude (XLZD)

https://supercdms.slac.stanford.edu/science-results/dark-matter-limit-plotter


Setting up a direct DM detection experiment in India

➢ New proposed cryogenic scintillator-based direct dark matter search 
experiment in India

➢ Scintillator and SiPM studies at low temperature

➢ Prototype experiment at 555 m initially to understand background

➢ Measurement and simulation of cosmogenic and radiogenic backgrounds at 
the site
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555 ML

Main SHAFT

3rd Stage SHAFT

880 ML
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Backgrounds at underground site
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Gamma Background

➢ Shielding with Lead investigated with GEANT4.

➢ 30 cm Pb           Shielding of 4.36 × 105 for Eγ ≥ 3 MeV.
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Gamma spectrum measured with CsI(Tl) detector

Gamma 
impinged 
from 
outside 
on outer 
surface

CsI(Tl) 
detector 
(same 
dimension as 
experiment)
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Muon Background

➢ Muon flux after background subtraction is 
(𝟐. 𝟐𝟓𝟕 ± 𝟎. 𝟐𝟔𝟏 ± 𝟎. 𝟎𝟒𝟐) × 𝟏𝟎−𝟕cm-2 sec-1.
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Resultant muon flux obtained from simulation :- (𝟐. 𝟎𝟓𝟏 ± 𝟎. 𝟏𝟒𝟐 ± 𝟎. 𝟎𝟎𝟗) × 𝟏𝟎−𝟕 cm-2 sec-1. 
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Neutron Flux

➢ The experimental measurement was done using a pressurized 4He detector

➢ 600 mm long cylinder with an inner diameter of 65 mm with 4He kept at 150-180 bar       fast neutrons.

➢ Inner wall lined with Lithium compound        thermal neutrons

8

➢ Flux of neutrons in the energy range 𝐸𝑛 ≤ 10 MeV 

was found to be (𝟏. 𝟔𝟑 ± 𝟎. 𝟎𝟑) × 𝟏𝟎−𝟒 cm-2 sec-1

➢ Neutron flux including the backscattering from GEANT4 

simulation obtained as (𝟐. 𝟔𝟏 ± 𝟎. 𝟏𝟕) × 𝟏𝟎−𝟒 cm-2 sec-1

➢ Flux of cosmogenic neutrons at the detector was found to be 

(𝟓. 𝟔𝟔𝟏 ± 𝟎. 𝟏𝟎𝟑) × 𝟏𝟎−𝟖 cm-2 sec-1.
neutrons

neutrons
muons
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Comparison with other labs

Global Fit functions :- D. Mei, A. Hime, Phys. Rev. D 73 (2006) 053004
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S. Banik, V. K. S. Kashyap, S. Ghosh, et. al. JINST 16 P06022 (2021) and S. Ghosh, et. al., Astropart. Phys. 139, 102700 (2022)
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Cosmic Muons Cosmogenic Neutrons

Lab in India Lab in India

https://www.sciencedirect.com/science/article/abs/pii/S0927650522000147
https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06022
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Scintillators and SiPMs at low temperature
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Experimental Setup

SLAC, 29 FEBRUARY 2024                                          SAYAN GHOSH 11



SiPM studies at low temperature

➢ Dark current and bias voltage behaved as expected till 40 K.

➢ At lower temperatures, it showed very high non-linearity and very high dark currents. 
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SiPM was directly irradiated with blue LEDSiPM was kept in dark condition
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Scintillator light output variation
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CsI Data in agreement with C. Amsler, et. al., 
NIM A 480 (2002) 494-500

Scintillators irradiated with Cs137 source 
(662 keV gamma energy)
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CsI and GGAG (Gd3Ga3Al2O12)
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Supernova neutrino interactions in xenon TPCs
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Why are supernova neutrinos interesting?

➢  Neutrinos from very early phases of supernova reach us: 
other particles are trapped due to high density.

➢  Through neutrinos, we can learn a lot about the supernova, 
such as mass, type, etc.

➢  Neutrinos arrive much earlier than the photons.

➢  Network of neutrino detectors can form a Supernova Early 
Warning System (SNEWS2.0) to inform the multimessenger 
community.
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Crab Nebulla. Credits :- NASA, ESA, J. Hester, A. Loll (ASU)

https://snews2.org/
https://www.nasa.gov/image-article/crab-nebula-3/


How are dark matter detectors relevant here?
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Inverse Beta decay

 

High thresholds

Coherent Elastic Neutrino 

Nucleus Scattering (CEνNS)

Recoil Energies ≈ 1 – 20 keV

Traditional 

neutrino detectors

ν of all flavours

Energies ≈ few to few tens of MeV 

Large volume 

Dark Matter Detectors 

with 

super low thresholds

and ultra-low 

backgrounds

νes only

(Nuclear Recoils)

High threshold!!!!



Supernova neutrino CEνNS and CC interactions

➢ In this work consider the SN due to the collapse of a 
18 M⊙ progenitor star at 1 kpc distance from the 
Earth. 

➢  For target we took 1 tonne of liquid xenon (132Xe 
isotope only)

➢ Neutrinos will undergo CEνNS and charged current 
interactions
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Neutrino-induced neutrons (νIn) (Energies ~ 2 MeV)



Electrons and gamma from CC interactions

➢ Interaction of neutrons, electrons and gamma rays following their energy spectra in GEANT4

➢ Multiple scattering accounted for signal generation
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Electrons from CC 
ne~13

Gamma rays from CC 
nγ~13 (multiplicity~6)
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Integrated S1 and S2 spectra

➢ Implications of such large signals to detector?

➢ Would it be possible to detect the CC and CEνNS signals together :-                                         
May lead to flavour composition studies of SN neutrinos.
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P. Bhattacharjee, A. Bandopadhyay, 

S. Chakroborty, S. Ghosh, et. al., 

Phys.Rev.D 106 (2022) 4, 043029.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.043029


20

Works in XENON collaboration
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Supernova at 10 kpc

➢Reference supernova model :-  11 M⊙ at a distance of 10 kpc 
  (Bollig 2016, Mirizzi, et. al., arXiv:1508.00785)               

➢At a distance of 10 kpc, a typical SN can generate ~70 CEνNS interactions in XENONnT                                                     
(~700 interactions in XLZD (40 t)).
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snewpy

SNAX
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https://github.com/XENONnT/multimessenger/
https://github.com/SNEWS2/snewpy
https://github.com/XENONnT/multimessenger/


Signal and background in detector

SIGNALS AND BACKGROUND WITHOUT CUTS SIGNALS AND BACKGROUND AFTER CUTS
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We put cuts on features like

S2 area, width, rise time, x-y position, etc.

Background-only Background-only

SN Signals 
(Simulated)

SN Signals 
(Simulated)
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Detection Significance
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Background and signal counts before and after cuts

Melih Kara
(SNvD 2023@LNGS: International 

Conference on Supernova Neutrino 
Detection)
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https://agenda.infn.it/event/27159/contributions/137502/attachments/105774/148763/MelihKara_SNvLNGS-orig_v3.pdf
https://agenda.infn.it/event/27159/contributions/137502/attachments/105774/148763/MelihKara_SNvLNGS-orig_v3.pdf
https://agenda.infn.it/event/27159/contributions/137502/attachments/105774/148763/MelihKara_SNvLNGS-orig_v3.pdf


Signal sizes for CC electrons

➢ For XENONnT/LZ < 1 CC electrons for 
SN at 10 kpc.

➢With XLZD (40 t) we can expect ~ 4 CC 
electrons.

➢Distance for at least 1 CC electron ~21 kpc. 
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CEνNS

CC e-s
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Limitations to CEνNS detection

➢Saturation in PMTs and dead times              
in DAQ systems (~ms).

➢Enhanced photo-ionization rate due to large 
S2s. 

➢Enhanced delayed few electron signal rate.

➢Effective dead time for muon signals          
is  ~ seconds
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Effective dead/high-background time
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Limitations to CEνNS detection

➢Saturation in PMTs and dead times              
in DAQ systems (~ms).

➢Enhanced photo-ionization rate due to large 
S2s. 

➢Enhanced delayed few electron signal rate. 

➢Effective dead time for muon signals          
is  ~ seconds
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Bulk of CEνNS within 1s

νes dominate 

the first ~20 ms

The first CC interaction may 

submerge the later CEνNS              

upto the next ~1s
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Implications on future detectors

➢Lower bound on the supernova distance 
due to the CC electrons?

➢Implications on design of future generation 
detectors  like DARWIN/XLZD.
◦ Enable detection of signals from                                       
O(1 keV) – O(100 MeV)

◦ Methods to suppress enhanced 
photoionization.

◦ Understanding the origin and suppression of          
delayed few electrons signals
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What I look forward to

➢ These implementations help us in lowering Dark Matter search thresholds with S2-only analysis.

➢ Lowering delayed electron emission            significantly lowers accidental backgrounds for current 
and future detectors.

➢ Sources of delayed electron emission

➢ Fluorescence from Teflon?

➢ Trapping of electrons near the liquid-gas interface? 

➢ Correlation with isolated single photons?

SLAC, 29 FEBRUARY 2024                                          SAYAN GHOSH 28

D. Yu. Akimov, et. al., Instruments and 

experimental techniques, 55 (2012) 4.

https://link.springer.com/article/10.1134/S002044121204001X
https://link.springer.com/article/10.1134/S002044121204001X
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Low Energy neutron Calibration of XENONnT
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The YBe calibration

➢ Light and charge yield at very low NR 
energies (8B CEνNS region) :- Low energy 
neutron calibration.

➢ YBe source produces neutrons at ~152 keV.

➢ Worked out the expected neutron rate in the 
detector for the calibration.

30

8B CEνNS region 
90 percentile region 
for YBe neutrons
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Calculating the neutron rate
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Validate the 
GEANT4 simulation

Calculate the xenon 
activation rate from data

Check for 
agreement with 

simulation

Total number of 
neutrons emitted by 

the YBe source

Upon matching

From simulation 
estimate the effect of 

coincident ER – NR 
interactions

Calculate the expected 
number of unique and 
detectable NR events

Constrain on the NR rate



Results… 
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Nuclear Recoil Rate :- Coming soon… Coming soon…
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Survival probability of electron neutrinos 
using solar pp neutrino in XLZD
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The future of xenon community
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The XLZD consortium

World leading DM search experiments joining hands 
for the next generation xenon observatory

Whitepaper:-  J. Aalbers, et. al.,         
J. Phys. G: Nucl. Part. 
Phys. 50 013001 (2022) 

xzld.org

MOU signed in July 2022

https://iopscience.iop.org/article/10.1088/1361-6471/ac841a
https://iopscience.iop.org/article/10.1088/1361-6471/ac841a
https://xlzd.org/


XLZD : Ultimate WIMP hunter
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➢ Realistic target mass :- 60 tonnes of LXe

➢ Global Xenon market will be one of the challenges

J. Aalbers, et. al., J. Phys. G: Nucl. Part. Phys. 50 013001 (2022)

~ 1 order of magnitude

XLZD : Projected WIMP sensitivity

https://iopscience.iop.org/article/10.1088/1361-6471/ac841a


XLZD : Solar pp neutrinos

SLAC, 29 FEBRUARY 2024                                          SAYAN GHOSH 36

arXiv:1201.6311

➢Precision measurement of pp solar neutrino flux

J. Aalbers, et. al., J. Phys. G: Nucl. Part. Phys. 50 013001 (2022) 

https://arxiv.org/abs/1201.6311
https://iopscience.iop.org/article/10.1088/1361-6471/ac841a


XLZD : Solar neutrinos (ER)

SLAC, 29 FEBRUARY 2024                                          SAYAN GHOSH 37

➢Precision measurement of pp solar neutrino flux

➢Multiple measurement of Pee at energies 

lower than Borexino measurement
J. Aalbers, et. al., J. Phys. G: Nucl. Part. Phys. 50 013001 (2022) 

Preliminary

https://iopscience.iop.org/article/10.1088/1361-6471/ac841a


Summary

➢ Role in setting up a new direct DM detection experiment in India

➢ Background measurement and simulation

➢ Characterization of SiPMs and Scintillators

➢ Supernova neutrino detection with dual-phase xenon TPCs

➢ Optimizing cuts and CEνNS detection significance.

➢ Effect and implication of CC interaction in current and future detectors

➢ Low energy nuclear recoil calibration with XENONnT

➢ MC validation

➢ Nuclear recoil rate calculation

➢ Solar pp neutrino detection with XLZD.
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GEANT4, detector R&D, staying underground

S2-only analysis, detector cuts, interest in single electrons

Data analysis, event selection

Supervision



Looking forward
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➢ Source of delayed electron emission

➢ Fluorescence

➢ Correlation with isolated single photons

➢ Trapping at liquid interface

➢ S2-only analysis

➢ Low energy NR calibrations

➢ Supernova neutrino detection

➢ Low energy region in XLZD (solar pp, 
and others…)

Lower mass

Lower cross-section

Understanding of :- 
i. intrinsic background and its reduction
ii. low energy detector response
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Backups…



He Neutron detector 
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S. Ghosh, et. al., Astropart. Phys. 139, 102700 (2022)

https://iopscience.iop.org/article/10.1088/1748-0221/16/06/P06022


Radiogenic neutrons
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Spectrum neutrons produced inside the rock

Spectrum neutrons at the detector

http://neutronyield.usd.edu/, 
Zhang-Mei-Hime NIM A606, 651 (2009) .

http://neutronyield.usd.edu/
https://www.sciencedirect.com/science/article/abs/pii/S016890020900833X?via=ihub


Cosmogenic neutrons
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Optimization of rock shell thickness

Cosmogenic neutron spectrum at the detector



Preliminary DM sensitivity
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S. Banik, V. K. S. Kashyap, S. Ghosh, et. al. JINST 16 P06022 (2021)

https://www.sciencedirect.com/science/article/abs/pii/S0927650522000147


Intrinsic Scintillator Light Increase

➢ Two processes, exciton-exciton annihilation (Birk’s mechanism) and electron-hole 
recombination (Onsager mechanism). Former causes reduction in light due to 
annihilation of Self Trapped Excitons (STE) and latter gives scintillation. 

➢ Birk’s mechanism is much less efficient for alkali halides because of high electron 
mobility.

➢ Electron thermalizes in intrinsic scintillators mainly through electron-phonon 
interaction. 

➢ Thermalization distance increases with decrease in temperature. 

➢ Recombination probability 𝑝 = 1 − exp(−
𝑟𝑂𝑁𝑆

𝑟
), where 𝑟𝑂𝑁𝑆 = 𝑒2/4𝜋𝜀0𝜀𝑘𝑇.
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Neutrons from CC interactions

46

Total number of neutrons 
generated is ~ 8.

Neutrino-induced neutrons (νIn)
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CC interactions of SN neutrinos (a limitation?)

➢The CC interactions lead to emission of electrons and a daughter nucleus in an 
excited state (132Cs* in case of 132Xe).

SLAC, 29 FEBRUARY 2024                                          SAYAN GHOSH

Time integrated spectrum of 

electrons from CC 

interaction of SN neutrinos 

for the entire supernova 

burst.

For 11 M⊙ model : ~4 electrons at 10 kpc are expected in XLZD (40 t).

47



Supernova at 10 kpc

➢Reference supernova model :-  11 M⊙ at a distance of 10 kpc 
  (Bollig 2016, Mirizzi, et. al., arXiv:1508.00785)               

➢At a distance of 10 kpc, a typical SN can generate ~70 CEνNS interactions in XENONnT                                                     
(~700 interactions in XLZD (40 t)).
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snewpy

SNAX
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https://github.com/XENONnT/multimessenger/
https://github.com/SNEWS2/snewpy
https://github.com/XENONnT/multimessenger/


Analysis pathways
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Supernova neutrino CEνNS

Ionization only

Low threshold
Almost no          

Z-information

Delayed electron 

emission
High signal rate

S1 - S2 paired 

signal

Cleaner Signal Higher threshold

Accidental 

Coincidences

Low rate from 

other sources

S1s & S2s
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What if we managed to implement the design?

➢These implementations help us in lowering Dark Matter search thresholds with S2-only analysis.

➢Lowering delayed electron emission            significantly lowers accidental backgrounds for XLZD.
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XLZD

CEνNS
(Total SN 

neutrino flux)

CC Interactions 
(Only νe flux)

Sensitivity to flavor 
composition of SN

Discriminate/ 
Constrain SN 

models?

Neutrino physics?

50
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Plans for the position at SLAC
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Reducing ACs :- Understand Delayed electron emission

➢ Understand the origin of delayed few-electron emission

➢ Explore and understand the source of uncorrelated electrons first

➢ Ideas :- Fluorescence or trapped impurities at the liquid-gas interface

➢ Possible strategies to suppress the signal

➢ Direct importance to LZ and to future detector design of XLZD.

➢ This will lower ACs and lower the analysis threshold for low-mass DM searches.

➢ Reduction of delayed electron emission also enhances supernova sensitivity of LZ and in future 
for XLZD. 
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Other plans with detector R&D

➢  I wish to work on HydroX.

➢ Study the dependence of hydrogen doping on S2-signals in gas mode

➢ Finally understand the change in signal shapes in the dual-phase mode

➢  Explore ideas for simultaneous detection of CEνNS and CC signals from supernova neutrinos 
with XLZD.
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Signals in dual-phase xenon TPC
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