.p'.‘ 2 \.\"‘: //
s -Laying the Foundation for Complete

Automatlon In Partlclfe Image Inference
Frang0|s Drielsma (SLAC) i *  Panofsky Seminar, Feb. 22nd 2024




Ultimate Research Goal SLAT G
What we get (raw data) What we want (“particle flow”)
1st Induction e ICARUS Data v 200 MeV
Vertex (Vu) o
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2nd Induction
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—Goal: Leverage Artificial Intelligence (Al) to automate this task
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Neutrino Oscillations SLAL st

Neutrinos are produced as different types

« Neutrino types are a superposition of
quantum mass states

(I/e) B ( cos 0 sinﬁ) (1/1) Mass
Vi —sinf cosd|[\r2)|states 2015 Sl etk

Mixing matrix

Foundation for Automation in Particle Image Inference, F. Drielsma 3



NATIONAL

Neutrino Oscillations SLAL ‘s

Neutrinos are produced as different types

« Neutrino types are a superposition of
quantum mass states

Ve\ _ |[ cos@ sin@ )| [v\|Mass
v,) |\—sin@ cosf)||\1r2/|states

Mixing matrix

© Nobel Media AB. Photo: A, Nobel Media AB. Photo: A

Mahmou Mahmoud

Takaaki Kajita Arthur B. McDonald

. . Am? =0.003eV?, sin’20=0.8, E,=1GeV
o« Mass wavefunctions oscillate at p— oot e

P('V(. — V#)

different rate— mixture changes
Mass splitting oaft ¢
o A0 o5 An’l%] Baseline i T00 200 300 400 500 600 700 800 %00
P(Ve — vy )|=/sin“20sin” i 8 o @Q el &
Appearance Neutrino D2 @@ O @:> D2 @:@Q
probability energy © g UG obg
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Neutrino Oscillations SLAL ‘s

Neutrinos are produced as different types

« Neutrino types are a superposition of
quantum mass states

Ve\ _ |[ cos@ sin@ )| [v\|Mass
v,) |\—sin@ cosf)||\1r2/|states

f?aal;c:l:i Kajita :;\i'hfnljlctjs B. McDonald
Mixing matrix
. . - Di’llkl-B(.j-GCOV\. .
« Masswavefunctions oscillate at (| e 0 el s
different rate— mixture changes Z osf j
Mass splitting B ok
2|1 )\ Baseli £ ol
: . o [|Am aseline £ oab
P(Ve — Vy)|=[sin* 20 sin’ (%Eb & F
02
Appearance Neutrino L - T 1
20 30 40 50 60 70 80 90 100
probability energy Ly/E, (km/MeV)
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What’s Missing?
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Several neutrino properties remain elusive

o Neutrino mass ordering

normal hierarchy (NH) inverted hierarchy (IH)

2 4 A 2

m m

[ E—
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Several neutrino properties remain elusive
o Neutrino mass ordering

o Leptonic CP-violation: origin of matter-antimatter asymmetry?

« CP symmetric
(No neutrino-antineutrino
difference)

normal hierarchy (NH)

inverted hierarchy (IH)

m2, A mZ

Disfavored
region at
the 30 C.L.

Enhance Enhance electron
electron neutrino antineutrino
appearance appearance

0 I E—

«— CP symmetric
(No neutrino-antineutrino

difference)

T2K
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What’s Missing?

Several neutrino properties remain elusive
o Neutrino mass ordering
o Leptonic CP-violation: origin of matter-antimatter asymmetry?
« Low-energyv_excess at short baseline: new type of neutrino?

— My research will help answer these questions

« CP symmetric
(No neutrino-antineutrino

normal hierarchy (NH) inverted hierarchy (IH)

2 difference)

m? 4 rm

the 30 C.L.

Enhance Enhance electron
electron neutrino antineutrino
appearance appearance
[ I —
= « CP symmetric
(No neutrino-an tineutrino
difference)
o o
T2K MiniBooNE

Foundation for Automation in Particle Image Inference, F. Drielsma 8



DUNE and SBN
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Two US-based neutrino oscillation experiments to answer these questions

Deep Underground Neutrino
Experiment (DUNE), 2028-?

Short Baseline Neutrino (SBN)
program, 2015-2027

1300 km: enhance matter effects
e Massordering, CP violation
e DUNE-FDrate: O(10%) v/ year

0.6 km: observe anomalies

e New type of neutrino?
e SBN S/Bratio: ~O(107)

Target SBND MicroBooNE ICARUS

Foundation for Automation in Particle Image Inference, F. Drielsma




DUNE/SBN Requirements
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LArTPC requirements
(proposals circa 2015):

o Efficiency for v, ID: >90%
o Efficiencyforv_ID:~80%
e Purity for both: ~85-90 %

Foundation for Automation in Particle Image Inference, F. Drielsma

v_efficiency

V_purity
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DUNE/SBN Requirements SLAT e
LArTPC requirements v_efficiency
(proposals circa 2015):
o Efficiency for v, ID: >90%
o Efficiencyforv_ID:~80%
e Purity for both: ~85-90 %

7.
- [ Phasen
GE
Phase II: no FD upgrade
st N s ~11years
C Phase |
v 4F /
% Founecm2a /o~
° 3f 3
2
1
% 2 4 6 8 10 12
Foundation for Automation in Particle Image Inference, F. Drielsma 2028 Years 11


https://arxiv.org/pdf/1512.06148.pdf

DUNE/SBN Requirements SLAT e
LArTPC requirements v efficiency V_purity

(proposals circa 2015):
o Efficiency for v, ID: >90%
o Efficiencyforv_ID:~80%
e Purity for both: ~85-90 %
What if efficiency drops?

o Less effective exposure

e Lesssensitivity

Foundation for Automation in Particle Image Inference, F. Drielsma


https://arxiv.org/pdf/1512.06148.pdf

bl ‘ h NATIONAL

No Reconstruction, No Physics SLAC i

DUNE/SBN cannot deliver physics
without a reliable reconstruction...

Foundation for Automation in Particle Image Inference, F. Drielsma 13



No Reconstruction, No Physics
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DUNE/SBN cannot deliver physics
without a reliable reconstruction...

1. The Era of Humans

o  What has been the traditional approach in particle
imaging detector? Has it been successful?

Foundation for Automation in Particle Image Inference, F. Drielsma
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DUNE/SBN cannot deliver physics
without a reliable reconstruction...

1. The Era of Humans

o  What has been the traditional approach in particle
imaging detector? Has it been successful?

2. Cybernetic Augmentation

o How have Machine Learning tools helped improve
reconstruction so far?

Foundation for Automation in Particle Image Inference, F. Drielsma
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No Reconstruction, No Physics
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DUNE/SBN cannot deliver physics
without a reliable reconstruction...

1. The Era of Humans

o  What has been the traditional approach in particle
imaging detector? Has it been successful?

2. Cybernetic Augmentation

o How have Machine Learning tools helped improve
reconstruction so far?

3. The Age of Machines

o How can Artificial Intelligence definitively solve the
issue of automation in particle imaging inference?

Foundation for Automation in Particle Image Inference, F. Drielsma
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Particle Imaging Detectors

ﬁ NATIONAL
! A- @® ACCELERATOR

LABORATORY

e
T

»

% / " e

'’ ’ L3

’ ) v
> F
’ i "
s S

Lo

Foundation for Automation in Particle Image Inference, F. Drielsma

imaging
noun [U] COMPUTING specialized

usd) /iI'mid3.n/ UK 4 /iI'mid3.n/

the process of producing an exact picture of something

https://dictionary.cambridge.org/us/dictionary/english/imaging
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Particle Imaging Detectors
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Foundation for Automation in Particle Image Inference, F. Drielsma

;NC dlscovery =
GargameHe (1973)
- Bubb]e chamber
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Particle Imaging Detectors Reconstruction SLAT i
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Step-by-step approach:

1. |ldentify interesting events in
pictures by eye

a. Scanning experts
b. Grad students

2. Trace particles on paper
by hand

3. Estimate particle kinematics

4. Review by senior physicist

Anita Bjorkebo
Gargamelle (1969)

Foundation for Automation in Particle Image Inference, F. Drielsma
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Particle Imaging Detectors Reconstruction SLAT Sy

AACHEN-BONN-CERN-MUNICH-OXFORD COLLABORATION

WA 21
EVENT 294/0995

Full “particle flow”

\
vp—DTpp- fz-

p’mrt

\.#’ v
Loty
Kt
L+ p—3 T*
nmw

L+p...np

0 NEUTRINO
" BEAM

MOMENTUM IN Gevik

Foundation for Automation in Particle Image Inference, F. Drielsma 21



Particle Imaging Detectors Reconstruction
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e (W et din,

AACHEN-BONN-CERN-MUNICH-OXFORD COLLABORATION

WA 21
EVENT 294/0995 ‘

regulated screechins
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MOMENTUM IN Gevik

Foundation for Automation in Particle Image Inference, F. Drielsma

Advantages:

e Verydetailed
interaction

Limitations:

o« Timeintensive
reconstruction

« Hardtoscale
o Largest: 15m?3
o Slow (~ seconds)

Neutrino interactions

arerare... 1LY of Pb
for 50 % chance

22



Liquid Argon Time Projection Chamber
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7 ijen;vvi';s V wire plane waveforms LArTPC: Detector Used
| e // today in DUNE and SBN
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Foundation for Automation in Particle Image Inference, F. Drielsma
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Liquid Argon Time Projection Chamber SLAT Sy

Sense Wires

U vy

p “|' Liquid ArgonTPC
/
/ ;
7/
7/

V wire plane waveforms LArTPC: Detector Used

today in DUNE and SBN:
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LArTPC Image LAC e

Run 3493 Event 41075, October 23"¢, 2015

Foundation for Automation in Particle Image Inference, F. Drielsma




LArTPC Image LAC e

uBOONE 1%
e

Distinguishes between
tracks and showers

Run 3493 Event 41075, October 23*¢, 2015

Foundation for Automation in Particle Image Inference, F. Drielsma




LArTPC Image LAC e

nBooNE
=

Distinguishes between low
and high ionization rates

Run 3493 Event 41075, October 23"¢, 2015

Foundation for Automation in Particle Image Inference, F. Drielsma




LArTPC Image LAC e

Resolves y conversion gap

Run 3493 Event 41075, October 23"¢, 2015

Foundation for Automation in Particle Image Inference, F. Drielsma
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LArTPC Reconstruction

Moved away from hand-scanning in the XXIt century?

Foundation for Automation in Particle Image Inference, F. Drielsma 29
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LArTPC Reconstruction

Left Collection view

Not immediately...

T 0 )
- L = o Papersstill published using this
sl 75 e P, technique until 2013!
v - Traced by hand « *=-_ Located by o Still time intensive to reconstruct
Conascreen **\’ ‘handoma
o [ e Sy SETeERCR Viable with low rates...

- Acta Phys. Polon. B41. 103-125

N TR W E T W N T RN W

1340 1350 1360 1370 1380 1390 1400 1410 1420
U [cm]

Foundation for Automation in Particle Image Inference, F. Drielsma 30


https://icarus.sites.lngs.infn.it/publications.php
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0103.pdf

LArTPC Reconstruction SLAC
= ?..eft Collection view = NOt immediately...
- t = o Papers still published using this
e & Sl technique until 2013!
o b : Located by o Still time intensive to reconstruct
“*N" ‘handoka
wo = : "g SErEmik el Viable with low rates...
R ..r\ \ ...dead on arrival at SBN and DUNE
\ e « ICARUS: O(10% v candidate / day!

« DUNE-ND: O(10°) v/ day!
50 E_l |AxCItlal IPIhVIIS IIP:cl)Ich)r[]|. 1TBI4|-:I,.! I ]I 10|:13|-1112|_|51 | &
1340 1350 1360 1370 1380 1390 1400 HlOU [lc':;(; \{ # | Grad. Student nightmare'"

Va
A
)
Foundation for Automation in Particle Image Inference, F. Drielsma l ; % 31



https://icarus.sites.lngs.infn.it/publications.php
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0103.pdf

LArTPC Reconstruction Challenge SLAT c

Why is it so challenging to automate?

« Write an algorithm based on physics principles...

1 Track + 1 Shower . 2 Tracks

Foundation for Automation in Particle Image Inference, F. Drielsma 32



LArTPC Reconstruction Challenge SLAC Ei

Why is it so challenging to automate?

« Write an algorithm based on physics principles...

o Realize it fails on harder topologies
< (j Years of development
o Add new rules to handle new topology, repeat

Foundation for Automation in Particle Image Inference, F. Drielsma 33



LArTPC Reconstruction Challenge SLAC Ei

Why is it so challenging to automate?

« Write an algorithm based on physics principles...
o Realize it fails on harder topologies

< (j Years of development
o Add new rules to handle new topology, repeat

With great detail comes
great responsibility

e Variety of possible
neutrino interactions
topologies is huge

Foundation for Automation in Particle Image Inference, F. Drielsma 34



The Weight of Expectations SLAC

PandoraPFA: particle flow algorithm developed for future e*e” colliders

o Adaptedinthe 2010s to be used in LArTPCs, > 10 years of development

o Best performing traditional approach in several LArTPC experiments

Does it live up to the DUNE/SBN requirements?

Foundation for Automation in Particle Image Inference, F. Drielsma 35


https://doi.org/10.1016/j.nima.2009.09.009

The Weight of Expectations

o~ P NATIONAL
el A-. ACCELERATOR
) b NN\ 7BORATORY

PandoraPFA: particle flow algorithm developed for future e*e” colliders

o Adaptedinthe 2010s to be used in LArTPCs, > 10 years of development

o Best performing traditional approach in several LArTPC experiments

Does it live up to the DUNE/SBN requirements? Not quite...

SBN Proposal 1eX

MicroBooNE 1eNpOmr

(hand-scanning) paper (PandoraPFA)
Purity 85 % 80 %
Efficiency 80 % 15%

Foundation for Automation in Particle Image Inference, F. Drielsma

arXiv:1503.0152

arXiv:2110.14065
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https://doi.org/10.1016/j.nima.2009.09.009
https://arxiv.org/abs/1503.01520
https://arxiv.org/abs/2110.14065
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Machine Learning SLAT S

Traditional Approach

Handcrafted

Model

Foundation for Automation in Particle Image Inference, F. Drielsma 38



Machine Learning
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Traditional Approach

Handcrafted Computer

Model

Machine Learning
Training
Data

Computer

a0
=
R
©
—
|_

Foundation for Automation in Particle Image Inference, F. Drielsma

Result
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Machine Learning

Traditional Approach

Handcrafted Computer Result

Model

Machine Learning
Training
Data

Computer

Training

NSWVADE]#)

Computer Result

Foundation for AutomatiPn in Particle Image Inference, F. Drielsma 40
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Machine Learning SLACT Sy

Traditional Approach

~ Universal function

approximator
Computer Result
Handcrafted . M o

Model

Machine Learning

Training
Data

Computer

Training

NSWVADE]#)

Computer Result

y = f(wiz1 +wexe+0b)
f =Tanh, ReLU, ...

Foundation for AutomatiPn in Particle Image Inference, F. Drielsma 41
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Machine Learning and Computer Vision SLAT i

ML is the state-of-the-art in CV, i.e. extracting high-level information from images

* ML revolutionized accuracy on image processing tasks

« AIl/ML for science: leverage those techniques in LArTPCs (image data)

Angshuman Gosh, DLDC

16% I Traditional computer vision
VGG, 19 layers N Deep learning computer vision
GoogleNet, 22 layers
s

28%

Instance
Segmentation

Semantic Classification Object
AlexNet, 8 layers

Classification =~ Segmentation + Localization Detection

Classification error

CAT ' ' CAT DOG DOG, CAT DOG, DOG, CAT
R TREE, SKY N g N\ : (Ensemble)
Y . X R A - SENet
Single Object No objects, just pixels Single Object Multiple Object - - - - """"I'""""""""mﬁﬁﬁ{a}(e'r}f)? -------------
36% 309
2.25%
Sta nfO I’d 1 C823 1 100% accuracy and reliability not realistic

2012 2013 2014 2015 2016 2017

Foundation for Automation in Particle Image Inference, F. Drielsma 42


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

LArTPC ML “Network” SLAL it

Joined SLAC

in 2019:

FD responsible
to deliver ML

reco. chain to
LArTPCs
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€0

Terao Drielsma  Tsang

co0

Usher Dominé

Foundation for Automation in Particle Image Inference, F. Drielsma 43



LArTPC ML “Network”
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Formed and
convene the
ICARUS ML
group since

2020-
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wn

i

Terao Drielsma  Usher

89

Koh

COLORADO STATE
9/ UNIVERSITY
.

Mooney  Berger  Mueller

RBE

Kashur  Carber Dyer

Foundation for Automation in Particle Image Inference, F. Drielsma
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LArTPC ML “Network”
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Expanded
group to
SBND since =% S Ty
2022' Mooney  Berger Mueuér

RBE

COLORADO STATE
UNIVERSITY

NATIONAL Kashur Carber Dyer
(=Ll Voo 4
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Terao  Drielsma  Usher

b <| @
Jwa Koh

Foundation for Automation in Particle Image Inference, F. Drielsma

s Syracuse University

Rajagopalan

UF

@ 0

Carlson

UNIVERSITY of

FLORIDA

‘>

Fan

Yale University

Balasubramanian

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK
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Acce pted COLORADO STATE ArgNOM'mmAemRQ fmﬁi R(%I&FI}%E}[?ER

Conve ner @ UNIVERSITY

role for the ' ” \& )
DUNE 2X2 Mooney Berger Mueller Djurc’ic Azam Utaegbulam Wolcott Micalilef

reco. group @ e
since 2023- =Y * Yale University
o1 A Fy o Kashur  Carber Dyer /.
Pl NN\ L ABORATORY
) —_ThE, UNIVERSITY
'.ga R | oF lowa S Syracuse University Balasubramanian
r .

Terao Drielsma  Tsang ﬁ ’ Q
1
Neogi - @2 COLUMBIA UNIVERSITY
@ I Kramer Rajagopalan IN THE CITY OF NEW YORK
& &)

Usher wa Chen
UCIRVINE

a9 UF i, | "
Douglas Koh \ | PR
Kumaran * ‘\‘ ;

Carlson Fan
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Physics-Informed ML Reconstruction SLAT Gy

What is relevant to pattern recognition in a detailed interaction image?

Foundation for Automation in Particle Image Inference, F. Drielsma
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Physics-Informed ML Reconstruction SLAL i

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

Foundation for Automation in Particle Image Inference, F. Drielsma 48
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Physics-Informed ML Reconstruction SLAT e

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity

2. ldentify important points (vertex, start points, end points)

Foundation for Automation in Particle Image Inference, F. Drielsma 49
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Physics-Informed ML Reconstruction SLAT e

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. ldentify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

Foundation for Automation in Particle Image Inference, F. Drielsma 50
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Physics-Informed ML Reconstruction SLAT e

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. ldentify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

Foundation for Automation in Particle Image Inference, F. Drielsma 51
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Physics-Informed ML Reconstruction SLAL i

What is relevant to pattern recognition in a detailed interaction image?

3. Cluster individual particles (tracks and full showers)
. . : : . . — Cluster-level
4. Cluster interactions, identify particle properties in context

Foundation for Automation in Particle Image Inference, F. Drielsma 52
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Pixel-level Feature Extraction SLAL o

Convolutional Neural Networks (CNN, source)

b B

Foundation for Automation in Particle Image Inference, F. Drielsma 53


https://www.researchgate.net/publication/334498427_Going_Deep_in_Medical_Image_Analysis_Concepts_Methods_Challenges_and_Future_Directions/figures?lo=1
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Pixel-level Feature Extraction

Convolutional Neural Networks (source)

o

Output

1A 5 ,/"\:,;

\:\,‘«‘\’,\v[ -
- N THE |

BOYS] |
PN [L\L

-~ Input

Foundation for Automation in Particle Image Inference, F. Drielsma 54


https://www.researchgate.net/publication/334498427_Going_Deep_in_Medical_Image_Analysis_Concepts_Methods_Challenges_and_Future_Directions/figures?lo=1
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Does it work on LArTPC data?

Specificity:
e 3D:ICARUS =0(10) Gigapixels

e Occupancy: ~ 104, locally dense

o Mostly meaningless space

Foundation for Automation in Particle Image Inference, F. Drielsma 55
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Pixel-level Feature Extraction SLAL et

LABORATORY

)

Does it work on LArTPC data?

Specificity: Problems:
e 3D:ICARUS =0(10) Gigapixels e Memory: ~ 100 GB per image...
e Occupancy: ~ 104, locally dense e Wasted computation: 99.99% empty

o Mostly meaningless space — Not viable

Foundation for Automation in Particle Image Inference, F. Drielsma 56
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Pixel-level Feature Extraction SLAL st

Solution? Sparse Convolutions!
o Only operate on active pixels

o Technique (SCN) invented at Faeebeek Metain 2017
o Pioneered use in Physics at SLAC: Quanta Magazine, PRD paper

Dense

Foundation for Automation in Particle Image Inference, F. Drielsma 57


https://arxiv.org/abs/1706.01307
https://www.quantamagazine.org/sparse-neural-networks-point-physicists-to-useful-data-20230608/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005

Pixel-level Feature Extraction SLAL st

Solution? Sparse Convolutions!
o Only operate on active pixels
o Technique (SCN) invented at Faeebeek Metain 2017
e Pioneered use in Physics at SLAC: Quanta Magazine, PRD paper
« Scales with space point count only! 6(46)-&Pb— O(1) MPix

254 T
| = 210 images fits the —e— Sparse
1 whole MicroBooNE detector 6
- 20 1 —e— Dense -
2
I e P o e o [}
9 151 16Gb = max. memon y £ 44
> % (P100/V100 GPU @ HPC)| +
S | °
£ 10+ ©
5 : :,
= . o <7
5] Image size: | ¢
o s :
: ohfemaate—t———T" T |
0 200 400 600 800 1000 0 200 400 600 800 1000

Batch size Batch size

Dense
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Semantic Segmentation

Separate topologically different types of activity

o~ NATIONAL
o1 A ® ACCELERATOR
) b NN\ 7BORATORY

, Showers, delta rays, Michel electrons, low energy blips

g Classify pixels
into categories
§ with UResNet
& 0
< o 600 +
(f L 650%
g 700
- ICARUS simulation

750
=] =] o
2] [} N
m m ~N

z [cm]
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Dense Fragment Formation S e
Break track/shower fragment instances where they touch
o Cluster track/shower fragments at this stage

' \ f Fragments

4 /
4 ‘ Classify pixels

il . into dense
s { S clusters
ig p 4 600 %/ )

N ICARUS simulation 750

N -
n (=} w
o~ o o

=
(=}
o
z [cm]
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Cluster-level feature extraction SLAL st

CNN: mostly sensitive to local neighborhood of pixel, but...
o« EM showers: photon mean free path in LAr = 18 cm (60 pixels)

« Interactions: 1°, K°, A\, neutrons
v (4GeV)+Ar— A KO pm* mom® ,»5

= . g /
First issue

| tackled

at SLAC

ICARUS simulation
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Cluster-level feature extraction
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We now represent the set of
fragments as a set of nodes in a graph
where edges represent correlations

Node features:
e Centroid
e Covariance matrix
e Start point/direction
[

Edge features:
e Displacement vector
[

Foundation for Automation in Particle Image Inference, F. Drielsma
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Cluster-level feature extraction
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Graph Neural Network (2017): develop features useful to node/edge classification

Fragments

e

Pree

Feature
extraction

Input Graph

Edgelayer

Edge Update

Node Update
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Groups

Output graph

Edge
selection

. &
@) @)
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o o ® '\o/. .
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OO NodeLayer O
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selection

Paper: PhysRevD.104.072004
(F. Drielsmaet al.)
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Particle Aggregation

Aggregate track/shower fragment instances into particles
Find edges that connect fragments that belong together

°
]L Fragments / \ Particles
3 $ [T~ .
Aggregate / : _
particle :
& fragments '\
N :
30
i g 600 % 600 +*
(a7d) = P
- 650 650 O
2 2 %
S 700 700
” ICARUS simulation 750 750
; [em] ; [cm]
Paper: PhysRevD.104.072004 64
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Particle Aggregation

el A Ao
P b NN\ | 7BORATORY
Aggregate track/shower instances into interactions
o Find edges that connect particles that belong together
Particles [ Interactions
Aggregate
& particles &
i
< 3 ™~
i d 600 +* i o 600 +*
%:'7 ' 650/%/ %}; ! 650/%/
i ICARUS simulation 750 7 750
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Reconstruction in LArTPCs SLAL ‘s

End-to-end ML-based reconstruction chain
e Sparse CNN for pixel-level features, GrapPA for superstructure formation

Graph NN
— — —— ———
u projection Points EM primaries Primaries
Nt 3 PPN \'». I 4 \\ {
a1 + AN [
7 b 1 s A A
X . S L= ) . S
v projection E aid Semantics GrapPA Particles GrapPA Interactions
f | — —— - f—
— =] = " \J i
T Cluster3D UResNet - O L.
w projection + UResNet Clusters Identification
e S \ g :\ ’ya
m ﬂ[]]:l[[u ! IR W L
; ' Paper: arXiv:2102.01033 PO
= Graph-SPICE = L&Yt
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LArTPC Simulation Test Case SLAL st

Realistic Neutrino + Cosmic ICARUS simulation as a benchmark
e One (two) v, (/ve) + Ar interaction/image

o ~25 cosmicinteractions/image (surface detector)
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'A selection in ICARUS

vu-CCQE Selection
o Topology: 1ulp

« Simplest topology to
reconstruct

e Firsttest that cosmicray
removal works

e Firsttesttoensurethe
reconstruction is
working at a basic level

. N—

Foundation for Automation in Particle Image Inference, F. Drielsma 68



A selection in ICARUS SLAL st

Traditional (PandoraPFA) ML (ours)

Selected v, - Tulp

LU E S LR S N B! M R B S SN CONR (e RS SN HE S LR B PR D e T

3000

1uOh - 304.236800 Events .
ulp - 9197.597900 Events

1uNp (N>1) - 1395.037035 Events 7
u1pNn (N>0)- 1.855102 4
u1pNr® (N>0)- 369.165386 Events
1uNz* (N>0)- 129.857171 Events
1u1pNa® (N>0)- 0.000000 Events .
v, CC Other - 2704.739358 Events
v, CC - 7.420410 Events

v NC - 524.993991 Events b
Cosmic - 172.524527 Events

Intime Cosmic - 26.710894 Events

2.5e20POT

2000—

1000[—

! { W

15 2 25 3
Reconstructed Energy [GeV]

Purity: 62.2%
Efficiency: 40.0 % (9198 events)
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'A selection in ICARUS
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Traditional (PandoraPFA)

ML (ours)

Selected v, - Tulp

LU E S LR S N B! M R B S SN CONR (e RS SN HE S LR B PR D e T

3000

1uOh - 304.236800 Events .
1ulp - 9197.597900 Events

1uNp (N>1) - 1395.037035 Events .
u1pNn (N>0)- 1.855102 4
u1pNr® (N>0)- 369.165386 Events
1uNz* (N>0)- 129.857171 Events
1u1pNa® (N>0)- 0.000000 Events .
v,, CC Other - 2704.739358 Events
v, CC - 7.420410 Events

v NC - 524.993991 Events g
Cosmic - 172.524527 Events
Intime Cosmic - 26.710894 Events

2.5e20POT

2000—

1000[—

! { W

15 2 25 3
Reconstructed Energy [GeV]

Purity: 62.2%
Efficiency: 40.0 % (9198 events)
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Selected 1u1p Candidates

4000

3500

3000

2500

2000

1500

Entries / 2.5e20 POT

1000

500

0

1ul1p (155883, 84.71%)
1uNp, N> 1 (678, 3.69%)
1u0h (1197, 6.51%)
1uinip (279, 1.52%)
Other v, CC (459, 2.49%)
v NC (200, 1.08%)
Cosmic (0, 0.00%)

0

Purity:
Efficiency:

I I T
300 600 900 1200 1500 1800 2100 2400 2700 3000

Reconstructed Visible Energy [MeV]

84.4%
67.8 % (15583 events)
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Vv, selection in ICARUS SLAL st

ve-CCQE Selection
'« Topology: 1elp

e Flashship measurement
in SBN (low-energy v_
excess)

o Signal to background
ratio in the beam: O(10™)

PandoraPFA ML (ours)
EIectron
Purity: Purity:
67.0% 78.3%
Efficiency: Efficiency:
25.3% 62.9 %
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Invariant mass of 1% in ICARUS SLAL o

“~_ Neutral pion invariant mass:

o Standard candle for
shower energy scale

Photon 1

Mo = v/2E1E5(1 — cos )

e Only calibration source
for EM shower energy

PandoraPFA ML (ours)
Resolution: Resolution:
19.8% 12.1%
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More Physics on the Horizon in SBN SLACT o

First DUNE-FD module still 4 years away...
SBN will produce plenty of interesting physics until then:
o Short baseline oscillation test (MiniBooNE anomaly)

o Richcross-section program (arXiv:1903.04608):

o  NuMl off-axis @ ICARUS: 10k v_/ year, higher energy than BNB (up to 3 GeV)
o BNB@SBND:2Mv/year,O(1) k A°/ % *hyperons, ~400 v - e scattering

— ML chain essential to deliver on these physics goals

1]

3

g7

2 ICARUS v, /v. sel. SBND v, /v. sel. End of SBN First DUNE-FD
; SBN v, — v. appearance data taking module online
se}

n

| 2024 f 2025 2026 + /037
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PY ° e. ‘h NATIONAL
Scalability SLAT e
On ICARUS:
SLAC: ~1d :
7 100 ay e 1s/event,leveraging
© ] GPU acceleration
g o Pandora:40s/event
= 10—1_
c ; e ~1.5Mbeamevents/yr
= ‘ 10% of NERSC:
S ~40 minutes Implications:
o+
)]
S 1072 « Fast software
Q ] :
o : ICARUS 1 year of data development (testing)

10t 102 103 « Fastturnaround
Number of A100 GPUS
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Impact Beyond Neutrino Physics

Outreach: familiarize physics the community with ML tools

o Targeted ML workshops and schools
o 2ICARUS/SBND, 2 SLAC ML Schools, KMI Nagoya ML School (astrophysics), SSI

o Open source software stack and first public LArTPC neutrino dataset
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Performance Drop on Data
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ML on Simulation ML on Data
Selected 1u1p Candidates
4000 - B 1u1p (15583, 84.71%) . -
m— 1N, N> 1 (678, 3.69%) Automatic selection se{enc‘:::clipas P 't
- . BN 1.0h (1197, 6.51%) T,>50 MeV urity:
8 3000 - B 1pimip (279, 1.52%) Imu+1p 109 ® Handscan
Py W Other v, CC (459, 2.49%) Imu+2p 9
@ 25007 W= U NC (200, 1.08%) — selected
o 2000 s Cosmic (0, 0.00%) Neutrinos not contained 8 events
- Other interactions 9 .
8 1500 Cosmics Efficiency:
5 1000 e Reconstruct
Puri 109/135
500 St 580.7% handscanned
0 —=—T FLAT SCAN 52 events
0 300 600 900 1200 1500 1800 2100 2400 2700 3000
Reconstructed Visible Energy [MeV]
Purity: 84.4% Purity: 80.7 %
Efficiency: 67.8% Efficiency: 52 % (target: >90 %)
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Domain Shift

Labeled Data | SuPervised Learning

D00
AN © VAN

OO ~—~ =28 3
@—>

Labels Q Al DO

sy

Rectangle Circle

A O Source:

: Medium
Triangle Hexagon

Machine ML Model

Foundation for Automation in Particle Image Inference, F. Drielsma 78


https://medium.com/@metehankozan/supervised-and-unsupervised-learning-an-intuitive-approach-cd8f8f64b644

Domain Shift
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Labeled Data

D00
AN © VAN

Supervised Learning

Machine

OO ~—~ =28
@—>

Labels

o

O 0.

Rectangle Circle

AYRS.

Triangle Hexagon

Source:
Medium
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ML Model

Simulation
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Domain Shift
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Labeled Data

D00
ANOAD

Supervised Learning

Machine

OO ~—~ =28
@—>

Labels

O o

Rectangle Circle

AYRS.

Triangle Hexagon

Source:
Medium
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ML Model

Simulation

weight | Pre-trained
Model 1oy
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Addressing the Domain Shift

What if we could train directly on data?
o Start fromraw data = target domain — no domain shift!

o Reduces detector systematics

Simulation Data Simulation Data

SE
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Addressing the Domain Shift

What if we could train directly on data?
o Start fromraw data = target domain — no domain shift!

o Reduces detector systematics

Simulation Data Simulation Data
o® .
o ©® Elephant in the room:
° @@@@ ® ® e
[¢] .
oo : e Raw datahas no obvious
labels, how can we train a
Model network on it?
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Self-Supervision in Large Language Models SLAT i

LABORATORY

Simple idea: mask known areas of a text, try to reconstruct it

Masking Language model
“Would you tell me, please, which way | ought to go from here?” “Would you tell me, [l which way | [l to go from here?” “Would you tell me, sir, which way | need to go from here?”
“That depends a good deal on where you want to get to,” said the Cat. “That [ 2 Il deal on where you want to et to,” said the Cat. “That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—" said Alice. - “ - much care where—" . Alice. “| don't much care where—" said Alice.
“Then it doesn't matter which way you go,” said the Cat. “Thenit doesn'tmatter [ I you go.” said the Cat. “Thenit doesn't matter which way you go,” said the Cat.
“—solong as| get frere" Alice added as an explanati "—solongas | get rere” Aice [ P "—solongas | get fere" Alice added as
“Oh, you're sure to do that,” said the Cat, “if you only walk long enough.” Q]-. todothat,” said the Cat, 1l.uiy-lu\gauxj\ “Oh, noneed to do that,” said the Cat, “if one only waits long enough.”
Original text Masked text Predicted text
Large corpus
Source
(unlabeled text)

Masked Self-Supervision Learning (SSL)
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Self-Supervision in Large Language Models SLACT Sy

Self-supervision works incredibly well for Large Language Models (LLMs)

Large corpus
(unlabeled text)

The Trevi fountains is in the center of ???

Foundation for Automation in Particle Image Inference, F. Drielsma

“Would you tell me, please, which way | ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—" said Alice.

“Then it doesn't matter which way you go,” said the Cat.
"—solongas | get fere" Alice added as an explanati

“Oh, you're sure to do that,” said the Cat, “if you only walk long enough.”

Original text

Masking

;.b

"—solongas | get

“Would you tell me, [l which way | [l to go from here?”
‘Wl-a-(mlmwucvoummwgelw," said the Cat.

| [l much care where—* [ Alice.
"Tl‘mitduesn’trnaner-.vwgu," said the Cat.

tere; Aice [l asanex

“On, [ to co that,” sai the Cat, i [Jf oy [l long enough.”

Masked text

—>

Language model

“Would you tell me, sir, which way | need to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.
“I don't much care where—" said Alice.

“Thenit doesn't matter which way you go,” said the Cat.

"—solong as | get fiere” Alice added as

“Oh, noneed to do that,” said the Cat, “if one only waits long enough.”

Predicted text

Source
Language Model
Rome Buenos Aires
96% 0.1%
Source
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Transformers

(4}

LLMs use transformers to learn correlations between words in a sentence

5 c v
e <) S ho] 7 A
o|® S8 a2 5o F
c oc @ 50 Y o= o S o o
F ®ooswuwu<< 2o £ <~ \Y . .
L Words with the same meaning

are strongly correlated

sur
la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>
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[

Transformers

(4}

LLMs use transformers to learn correlations between words in a sentence

are strongly correlated

sur
la

5 c v
e <) S ho] 7 A
o 8 eSiglad 38 E
c oc @ 50 Y o o S o o
F ®© 63 wuw< 2w & <A \Y . .
L Words with the same meaning

zone
économique

européenne

Unrelated Words are
not correlated

été

signé
en
aolt
1992

<end>
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[

Transformers

(4}

LLMs use transformers to learn correlations between words in a sentence

are strongly correlated

sur
la

5 c v
e <) S ho] 7 A
o 8 eSiglad 38 E
c oc @ 50 Y o o S o o
F ®© 63 wuw< 2w & <A \Y . .
L Words with the same meaning

zone
économique

européenne

Unrelated Words are
not correlated

été

signé
en
aolt
1992 .
Complexity: N2

<end>
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Transformers

Transformers can use learned correlations to guess the next word in a sequence

Input sentence Word Embeddings Model Output
' s N r—/% r A N\ r <%
- . Transformer sea 22%
[ The fish lived in the ]—>E E E E g—‘[ }—’ blue 17%
The fish lved I the river 16% Most likely next word: sea

ocean 14%
when 0.01%
under 0.01%
bicycle 0.001%
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Transformers

Transformers can use learned correlations to guess the next word in a sequence

Input sentence Word Embeddings Model Output
' s N /—/% r A N\ r <%
N . Transformer sea 22%
[The fish lived in the ]—’E E E E E—‘[ }—’ ol0e 17%
Tiver 16% I .
The fish lved I the ieeTEs Most likely next word: sea,

when 0.01% but let’s pick blue instead

under 0.01%
bicycle 0.001%

Choose next token: “blue”

s (Fovrmye] frms i Transformer sea 32%
[Theflsh lived in th]—»E E E E E E—{ J—v S

- ; ocean 16% .
The fish lived in the blue lake 14% Most likely next word: sea
when 0.01%
under 0.01%
bicycle 0.001%

-

Choose next token: “sea PP
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Raw LArTPC data SLAC i

This is what LArTPC data looks like raw...
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00 200
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Raw LArTPC data SLAC i

This is what LArTPC data looks like raw...
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Language of Detectors: the Waveform

At the most basic level, most detectors produce waveforms

Response of electronics to a charge signal (collected electrons)

. Baseline <«—— Signal — Waveform
4 4
>
§ T
0 -
-2
40 60 80 100

0 20
Time tick
92
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Language of Detectors: the Waveform SLAC
At the most basic level, most detectors produce waveforms
o Response of electronics to a charge signal (collected electrons)
o Information sparse: mostly meaningless noise
o Long:4096 samples per wire in ICARUS, O(10”4) wires
— Waveform

Baseline <—— Signal

Value

0 20 40 60 80
Time tick
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Language of Detectors: the Waveform oHIF-TOge o

Can we use Transformers?
o Words: waveform chunks
« Word representation: value for each tick in chunk

o Information extracted: correlations between waveform chunks

6 - — I»Navjorm
Sign

Value

4 - \/ v\
2 I\ '!\
ol P VAV.\jvnv\ \/ '\Vr \/]\ \ﬁr/l /\\ A T WA WY N ,\N vi W

Time tick
Foundation for Automation in Particle Image Inference, F. Drielsma 94




B. A h NATIONAL

—— =@ ACCELERATOR

DenOiSi ng Db AN 150RATORY

Naive approach:
1. Mask one to a few ticks of the waveform

2. Train network to reproduce missing region(s), minimize: £ =Y., (9; — yi)?
a.k.a.L2loss

—— Waveform
&1 —— Signal
4_
2 -
N AMA /\ .
V M VAV
_2 -
0 20 40 60 80 10

Value

0

Time tick
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What you get from £ = 3.5, (9i — v:)?
1. Cannot reproduce random noise, baseline is the best fit

Value

0 20 40
Time tick
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Denoising
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What you get from £ = 3.5, (9i — v:)?

1. Cannot reproduce random noise, baseline is the best fit

2. Canreproduce signal, if visible around the mask region

— Learn signal shape and noise removal

—— Processed waveform

0

Foundation for Automation in Particle Image Inference, F. Drielsma
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Denoising SLAS ot

What if the signal is buried in noise? What if noise looks like signal?

2§ — Waveform
—— Signal
s Lo N AN A _
g / \1\/ VW
-2 , .
0 20 40 60 80 100

Time tick
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Denoising SLAS ot

What if the signal is buried in noise? What if noise looks like signal?

« We have context!

o WMNW/\’*V\/‘”V\N\.AAW\
WWMWW\—J
V\/\/‘M-/\/\»v’“f\/\,w\/\/\w
f-\/\/\/\\ArV\N\f’\/\’J\MM/‘—'\MNv\/
AP AN NN A A A AN
W\/‘\/\N\/\/"\»/\'J\'J\//‘/\/\fw—“\/\/\w
\/V\/\/\A/VV\W/\/J\/\/\A-»/\M_/\/-'\/\/\N
’\/\A/\/\/\/“\/JV\/\/\\[\'V‘/\/"\/\/\/WV\—\/\/J\N\

0 20 40 60 80 100
Time tick
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Denoising SLAS ot

What if the signal is buried in noise? What if noise looks like signal?

« We have context! It allows us to infer dead regions effectively
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Tomographic reconstruction
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In LArTPCs, we have 3 projections available

« Game: find correlated signals across 3 planes

Projection 1 Projection 2

Projection 3
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Tomographic reconstruction SLAC

In LArTPCs, we have 3 projections available

Game: find correlated signals across 3 planes

Transformers are correlation machines 3 space points in 3D
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Tomographic reconstruction

In LArTPCs, we have 3 projections available
« Game: find correlated signals across 3 planes

o Transformers are correlation machines

y axis u axis VvV axis

o In| S o S EE——Y 'Y
R —— W_BV%, e
,Ef S — N
= = —> d
3 : i —{
B e B {
o e Il I i ] I —— S

I\ WRURPUUS [ | ;| TSV N .

dx
Small time chunk = slice in x Infer space points/segment

from correlated wire signals
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Tomographic reconstruction SLAC

In LArTPCs, we have 3 projections available

« Game: find correlated signals across 3 planes

« Transformers are correlation machines /
‘4::
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Small time chunk = slice in x Infer space points/segment

from correlated wire signals
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Tomographic reconstruction SLAC

Feasibility study with GNNs: it can work (TomoGNN)

o Relied on 2D hits being built, signal-based method would not

Drift,_ e
axis
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Tomographic reconstruction SLAC

Feasibility study with GNNs: it can work (TomoGNN)

o Relied on 2D hits being built, signal-based method would not

Drift,_ ey
axis

)
sttt
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Tomographic reconstruction SLAC

Feasibility study with GNNs: it can work (TomoGNN)

o Relied on 2D hits being built, signal-based method would not

Drift,_ ey
axis

)
sttt
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Generic Artificial Intelligence SLAC

Self-supervised LLMs (e.g. GPT-4) have very interesting properties if
« Built on a very complex model: ~ 10?parameters

« Given a huge amount of raw training data: ~ 5 x 10° words (45 GB)
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Generic Artificial Intelligence

Self-supervised LLMs (e.g. GPT-4) have very interesting properties if
« Built on a very complex model: ~ 10?parameters
« Given a huge amount of raw training data: ~ 5 x 10° words (45 GB)

— Can be quickly fine-tuned to perform specific tasks!

Model LLM fine-tuning Model
PROMPT]. . .], COMPLETION]. . .]
. PROMPT]. . .], COMPLETION]. . . .
Pre-trained [...] [...] Fine-tuned
PROMPT[. ..], COMPLETION[...] —mm
PROMPT]. . .], COMPLETION. . .] LLM
PROMPT]. . .], COMPLETION. . .]
""""""" ! st ties sertance fe
______________ J rgns_a_e_ls_se_n Enie_o_ e
[ EXAMPLE TEXT] [ EXAMPLE TEXT]
[ EXAMPLE COMPLETION | [ EXAMPLE COMPLETION ]

Foundation for Automation in Particle Image Inference, F. Drielsma 109



. NATIONAL
= —— =@ ACCELERATOR

B /NN | ABORATORY

U
b

Generic Artificial Intelligence

Self-supervised LLMs (e.g. GPT-4) have very interesting properties if
« Built on a very complex model: ~ 10?parameters
« Given a huge amount of raw training data: ~ 5 x 10° words (45 GB)

— Can be quickly fine-tuned to perform specific tasks!

. . Tasks
Model LLM fine-tuning Model
Question 7
ﬁ, Answering ;,'
PROMPT][. . .], COMPLETION]. . .]
. PROMPT]. . .], COMPLETION]. . .] : D SartiTa:
Pre-trained Fine-tuned & T s
PROMPT[. ..], COMPLETION[...] —— LLM =/
PROMPT]. . .], COMPLETION]. . .] ™ . @
[N [ Informati
PROMPT[...], COMPLETION]. . .] < 7 %, Er;;::'al;:nv\
Foundation ~ ine-tuning . [
¢ Model &*‘ Captioning o
______________ al ST DN ) Object
______________ J Translate this sentenceto... & o T
[ EXAMPLE TEXT] [ EXAMPLE TEXT]
[ EXAMPLE COMPLETION ] [ EXAMPLE COMPLETION ] @ﬁ‘; o }
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Instead: give a lot of
raw waveform data
to alarge model

Learn a general
raw data
representation
useful to all reco.
tasks
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Center for Research on Foundation Models SLAL st

Unique opportunity to collaborate with and contribute to the CRFM

« Support and experts to mitigate the risks associated with this endeavor

SLAC Colloquium - "Some
Building Blocks for Foundation
Model Systems" by Chris Re,
Stanford University

Chris Re, Stanford University, Department of Computer

Science

Foundation for Automation in Particle Image Inference, F. Drielsma

Center for
Research on
Foundation
Models

Stanford University
Human-Centered
Artificial Intelligence
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Research on long sequence processing:

FlashAttention: speed-up by

localizing computations on GPU
S4/Mambda Model: subquadratic

implementation of a state-space
model with FM properties

HyenaDNA: 420k “words”
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Self-Supervision beyond LArTPC

Waveform data is ubiquitous in science and industry

— Successful self-supervision on raw waveform data has implications well
beyond LArTPCs alone, synergies at SLAC
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Time
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9 Drift time
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Collection stri
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X coordinate (cm)
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Self-Supervision beyond LArTPC

Waveform data is ubiquitous in science and industry

— Successful self-supervision on raw waveform data has implications well
beyond LArTPCs alone, synergies at SLAC

— Science for Al/ML
nEXO (charge) LZ (Ilght) Music (sound) Heartbeat (EKG),
80 .
= T JR— , brain (EEG)
- s2 ‘
% > ]y 4 i \N"ﬁ M”('K
% | E lhv\“r»u — ’V“j’ I IR P f
) = LJUN.WMJLLM L,
Induction-only strips >S1 5 AT NI e ot
Noise strips B M, B P \
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Conclusions

N

LArTPCs are at the core of the US-based accelerator neutrino program
o« DUNE and SBN cannot succeed without a high-quality reconstruction

o Partially automated the reconstruction from space point to interactions

o New state-of-the-art on 3 LArTPC experiments
o Clear road-map towards foundation models in waveform data

o Address the remaining challenges in LArTPCs and open a new pole of research

'g ICARUS Michel e
_Z’ ICARUS v, /v. sel. SBND v /ve sel. End of SBN First DUNE-FD
; SBN v, — v. appearance data taking module. online Beam long shutdown
& S S
[ 2024 ] 2025 2026 8 608777 2029 [ >
& Denoising
-% Tomographic reco.
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2 All-purpose foundation model
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