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What we get (raw data)                               What we want (“particle flow”)

→Goal: Leverage Artificial Intelligence (AI) to automate this task

Ultimate Research Goal
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Neutrinos are produced as different types 

● Neutrino types are a superposition of 
quantum mass states

Neutrino Oscillations
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Neutrinos are produced as different types 

● Neutrino types are a superposition of 
quantum mass states

● Mass wavefunctions oscillate at 
different rate→ mixture changes

Neutrino Oscillations
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Neutrinos are produced as different types 
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Several neutrino properties remain elusive

● Neutrino mass ordering

What’s Missing?
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Several neutrino properties remain elusive

● Neutrino mass ordering

● Leptonic CP-violation: origin of matter-antimatter asymmetry?

What’s Missing?
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T2K



Several neutrino properties remain elusive

● Neutrino mass ordering

● Leptonic CP-violation: origin of matter-antimatter asymmetry?

● Low-energy ν
e
 excess at short baseline: new type of neutrino?

→ My research will help answer these questions

What’s Missing?
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T2K MiniBooNE



Two US-based neutrino oscillation experiments to answer these questions

DUNE and SBN

9

Deep Underground Neutrino 
Experiment (DUNE), 2028-?

Short Baseline Neutrino (SBN) 
program, 2015-2027

1300 km: enhance matter effects

● Mass ordering, CP violation

● DUNE-FD rate: O(103) ν / year

●

0.6 km: observe anomalies

● New type of neutrino?

● SBN S/B ratio: ~ O(10-5)

●

→ L/E ~ 
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→ Shared detector technology: the Liquid Argon Time Projection Chamber



LArTPC requirements                 
(proposals circa 2015):

● Efficiency for νμ ID: > 90 %

● Efficiency for ν
e
 ID: ~ 80 %

● Purity for both: ~ 85-90 %

DUNE/SBN Requirements
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LArTPC requirements                 
(proposals circa 2015):

● Efficiency for νμ ID: > 90 %

● Efficiency for ν
e
 ID: ~ 80 %

● Purity for both: ~ 85-90 %

DUNE/SBN Requirements
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~11 years

DUNE CM '24

2028

ν
e 

efficiency ν
e 

purity

https://arxiv.org/pdf/1512.06148.pdf


LArTPC requirements                 
(proposals circa 2015):

● Efficiency for νμ ID: > 90 %

● Efficiency for ν
e
 ID: ~ 80 %

● Purity for both: ~ 85-90 %

What if efficiency drops?

● Less effective exposure

● Less sensitivity

DUNE/SBN Requirements
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DUNE CM '24

2028
???

ν
e 

efficiency ν
e 

purity

https://arxiv.org/pdf/1512.06148.pdf


DUNE/SBN cannot deliver physics
without a reliable reconstruction…

No Reconstruction, No Physics
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DUNE/SBN cannot deliver physics
without a reliable reconstruction…

1. The Era of Humans

○ What has been the traditional approach in particle 
imaging detector? Has it been successful?

No Reconstruction, No Physics
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DUNE/SBN cannot deliver physics
without a reliable reconstruction…

1. The Era of Humans

○ What has been the traditional approach in particle 
imaging detector? Has it been successful?

2. Cybernetic Augmentation

○ How have Machine Learning tools helped improve 
reconstruction so far?

No Reconstruction, No Physics
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DUNE/SBN cannot deliver physics
without a reliable reconstruction…

1. The Era of Humans

○ What has been the traditional approach in particle 
imaging detector? Has it been successful?

2. Cybernetic Augmentation

○ How have Machine Learning tools helped improve 
reconstruction so far?

3. The Age of Machines

○ How can  Artificial Intelligence definitively solve the 
issue of automation in particle imaging inference?

No Reconstruction, No Physics
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1. The Era of Humans
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Particle Imaging Detectors

 

e+ discovery
Anderson (1932)
Cloud chamber

https://dictionary.cambridge.org/us/dictionary/english/imaging

18

https://dictionary.cambridge.org/us/dictionary/english/imaging
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Particle Imaging Detectors

 

e+ discovery
Anderson (1932)
Cloud chamber

NC discovery
Gargamelle (1973)
Bubble chamber

19
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Particle Imaging Detectors Reconstruction

 Step-by-step approach:

1. Identify interesting events in 

pictures by eye
a. Scanning experts

b. Grad students

2. Trace particles on paper       

by hand

3. Estimate particle kinematics

4. Review by senior physicist

Anita Bjorkebo
Gargamelle (1969)

20
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Particle Imaging Detectors Reconstruction

 

D* Meson
BEBC (1978)
Bubble chamber

21

Full “particle flow”Superheated
LH2
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Particle Imaging Detectors Reconstruction

 

D* Meson
BEBC (1978)
Bubble chamber

Advantages:

● Very detailed 

interaction

Limitations:

● Time intensive 
reconstruction

● Hard to scale
○ Largest: 15 m3

○ Slow (~ seconds)

Neutrino interactions 

are rare… 1 LY of Pb 

for 50 % chance
22

Superheated
LH2
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Liquid Argon Time Projection Chamber

 

23

LArTPC: Detector used 

today in DUNE and SBN

O(1) m



Foundation for Automation in Particle Image Inference, F. Drielsma

Liquid Argon Time Projection Chamber

 LArTPC: Detector used 

today in DUNE and SBN:

● Precision of its 

ancestors

● Dense (1.4 g/cm3)

● Cheap (~ 1$/kg), 

a.k.a.  scalable

24

O(1) m



LArTPC Image

 

νμ
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LArTPC Image
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EM Shower
Track

Distinguishes between 
tracks and showers
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LArTPC Image
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Distinguishes between low 
and high ionization rates

Minimum 
ionizing

Highly 
ionizing
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LArTPC Image
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Resolves γ conversion gap 
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LArTPC Reconstruction

 Moved away from hand-scanning in the XXIst century? 

29



Traced by hand 
on a screen

Located by 
hand on a 
screen
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LArTPC Reconstruction

 Not immediately…

● Papers still published using this 
technique until 2013!

● Still time intensive to reconstruct

Viable with low rates…

30

Acta Phys. Polon. B41, 103-125

https://icarus.sites.lngs.infn.it/publications.php
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0103.pdf


Traced by hand 
on a screen

Located by 
hand on a 
screen
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LArTPC Reconstruction

 Not immediately…

● Papers still published using this 
technique until 2013!

● Still time intensive to reconstruct

Viable with low rates…

…dead on arrival at SBN and DUNE

● ICARUS: O(104) ν candidate / day!

● DUNE-ND: O(106) ν / day!

31

Acta Phys. Polon. B41, 103-125

Grad. student nightmare…

https://icarus.sites.lngs.infn.it/publications.php
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0103.pdf
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LArTPC Reconstruction Challenge

 Why is it so challenging to automate?

● Write an algorithm based on physics principles…

32

1 Track + 1 Shower 2 Tracks

Kink
Kink

Line

Cone
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LArTPC Reconstruction Challenge

 Why is it so challenging to automate?

● Write an algorithm based on physics principles…

● Realize it fails on harder topologies

● Add new rules to handle new topology, repeat

33

Years of development
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LArTPC Reconstruction Challenge

 Why is it so challenging to automate?

● Write an algorithm based on physics principles…

● Realize it fails on harder topologies

● Add new rules to handle new topology, repeat

34

With great detail comes 
great responsibility

● Variety of possible 
neutrino interactions 
topologies is huge

Years of development
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The Weight of Expectations

 PandoraPFA: particle flow algorithm developed for future e+e- colliders 

● Adapted in the 2010s to be used in LArTPCs, > 10 years of development

● Best performing traditional approach in several LArTPC experiments

Does it live up to the DUNE/SBN requirements?

35

https://doi.org/10.1016/j.nima.2009.09.009
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The Weight of Expectations

 PandoraPFA: particle flow algorithm developed for future e+e- colliders 

● Adapted in the 2010s to be used in LArTPCs, > 10 years of development

● Best performing traditional approach in several LArTPC experiments

Does it live up to the DUNE/SBN requirements? Not quite…

36

SBN Proposal 1eX 
(hand-scanning)

MicroBooNE 1eNp0π 
paper (PandoraPFA)

Purity 85 % 80 %

Efficiency 80 % 15 %

arXiv:1503.01520 arXiv:2110.14065

https://doi.org/10.1016/j.nima.2009.09.009
https://arxiv.org/abs/1503.01520
https://arxiv.org/abs/2110.14065


2. Cybernetic Augmentation



Machine Learning

38Foundation for Automation in Particle Image Inference, F. Drielsma

R
ec

o
.

Computer
Data

Handcrafted 
Model

Traditional Approach

Result



Machine Learning
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Machine Learning
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Machine Learning
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~ Universal function 
approximator



HEP Institutional Review 2022

Stanford, CS231

Angshuman Gosh, DLDC 
2021

Machine Learning and Computer Vision

42

ML is the state-of-the-art in CV, i.e. extracting high-level information from images

• ML revolutionized accuracy on image processing tasks

• AI/ML for science: leverage those techniques in LArTPCs (image data)

Foundation for Automation in Particle Image Inference, F. Drielsma

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
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LArTPC ML “Network”

 

Terao Drielsma

Koh

43

Joined SLAC    
in 2019:
FD responsible 
to deliver ML 
reco. chain  to 
LArTPCs

Usher Dominé

Tsang
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LArTPC ML “Network”

 

Terao Drielsma Usher

Jwa Koh

Mooney Berger Mueller

Kashur Carber Dyer

44

Formed and 
convene the 
ICARUS ML 
group since 
2020-
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LArTPC ML “Network”

 

Mooney Berger Mueller

Kashur Carber Dyer

Carlson Fan

Oza

Balasubramanian

Terao Drielsma Usher

Jwa Koh

45

Expanded 
group to 
SBND since 
2022-

Rajagopalan
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LArTPC ML “Network”

 

Terao Drielsma Tsang

Usher Jwa Chen

Douglas Koh
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Kramer

Wolcott Micallef

Kumaran

Mooney Berger Mueller

Kashur Carber Dyer

Carlson Fan

Djurcic Azam

Neogi

Oza

Utaegbulam

Balasubramanian

Rajagopalan

Accepted 
convener 
role for the 
DUNE 2x2 
reco. group 
since 2023-



What is relevant to pattern recognition in a detailed interaction image?

47

Input

Physics-Informed ML Reconstruction
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Physics-Informed ML Reconstruction
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Input 1

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

Foundation for Automation in Particle Image Inference, F. Drielsma



Physics-Informed ML Reconstruction
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Input 1+2

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)
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Physics-Informed ML Reconstruction
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Input 1+2 3

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)
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What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

Physics-Informed ML Reconstruction
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Input 1+2 4

e-

p+

p+
π+

Foundation for Automation in Particle Image Inference, F. Drielsma

3 ν
e
, 800 MeV



Physics-Informed ML Reconstruction
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e-

p+
π+

→ Pixel-level

→ Cluster-level

p+

431+2Input

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

2. Identify important points (vertex, start points, end points)

3. Cluster individual particles (tracks and full showers)

4. Cluster interactions, identify particle properties in context

Foundation for Automation in Particle Image Inference, F. Drielsma

ν
e
, 800 MeV



Pixel-level Feature Extraction
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Convolutional Neural Networks (CNN, source)
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CNN

https://www.researchgate.net/publication/334498427_Going_Deep_in_Medical_Image_Analysis_Concepts_Methods_Challenges_and_Future_Directions/figures?lo=1


Pixel-level Feature Extraction
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Convolutional Neural Networks (source)
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Output

Input

CNN

https://www.researchgate.net/publication/334498427_Going_Deep_in_Medical_Image_Analysis_Concepts_Methods_Challenges_and_Future_Directions/figures?lo=1


Pixel-level Feature Extraction
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Does it work on LArTPC data?
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Specificity:

● 3D: ICARUS = O(10) Gigapixels

● Occupancy: ~ 10-4, locally dense

○ Mostly meaningless space

CNN



Pixel-level Feature Extraction
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Does it work on LArTPC data?
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Specificity:

● 3D: ICARUS = O(10) Gigapixels

● Occupancy: ~ 10-4, locally dense

○ Mostly meaningless space

Problems:

● Memory: ~ 100 GB per image…

● Wasted computation: 99.99% empty

→ Not viable

CNN



Pixel-level Feature Extraction
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Solution? Sparse Convolutions!

● Only operate on active pixels

● Technique (SCN) invented at Facebook Meta in 2017

● Pioneered use in Physics at SLAC: Quanta Magazine,  PRD paper

Foundation for Automation in Particle Image Inference, F. Drielsma

 

Dense Sparse

Output

Input

https://arxiv.org/abs/1706.01307
https://www.quantamagazine.org/sparse-neural-networks-point-physicists-to-useful-data-20230608/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Pixel-level Feature Extraction

58

Solution? Sparse Convolutions!

● Only operate on active pixels

● Technique (SCN) invented at Facebook Meta in 2017

● Pioneered use in Physics at SLAC: Quanta Magazine,  PRD paper

● Scales with space point count only! O(10) GPix → O(1) MPix

●

Foundation for Automation in Particle Image Inference, F. Drielsma

 

Dense Sparse

Image size: 

Output

Input

https://arxiv.org/abs/1706.01307
https://www.quantamagazine.org/sparse-neural-networks-point-physicists-to-useful-data-20230608/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Semantic Segmentation

59

Separate topologically different types of activity

● Tracks, Showers, delta rays, Michel electrons,  low energy blips

Classify pixels 
into categories 
with UResNet

Foundation for Automation in Particle Image Inference, F. Drielsma

ICARUS simulation

Paper: PhysRevD.102.012005

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Dense Fragment Formation
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Break track/shower fragment instances where they touch

● Cluster track/shower fragments at this stage

ICARUS simulation

Classify pixels 
into dense 
clusters

Fragments

Foundation for Automation in Particle Image Inference, F. Drielsma Paper: arXiv:2007.03083

https://arxiv.org/abs/2007.03083


Cluster-level feature extraction
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CNN: mostly sensitive to local neighborhood of pixel, but…

● EM showers: photon mean free path in LAr = 18 cm (60 pixels)

● Interactions: π0, K0, Λ, neutrons

Foundation for Automation in Particle Image Inference, F. Drielsma

νμ(4 GeV) + Ar → Λ K0
L
 μ- π+ π0 π0

ICARUS simulation

Vertex

Related

Related

First issue
I tackled
at SLAC



Cluster-level feature extraction
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We now represent the set of 
fragments as a set of nodes in a graph 
where edges represent correlations

Node features:

● Centroid
● Covariance matrix
● Start point/direction
● . . .

Edge features:

● Displacement vector
● . . .  
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Cluster-level feature extraction

63

Graph Neural Network (2017): develop features useful to node/edge classification

Paper: PhysRevD.104.072004
(F. Drielsma et al.)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower fragment instances into particles

● Find edges that connect fragments that belong together

ICARUS simulation

Aggregate 
particle 
fragments 

Fragments Particles

Foundation for Automation in Particle Image Inference, F. Drielsma Paper: PhysRevD.104.072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Aggregation
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Aggregate track/shower instances into interactions

● Find edges that connect particles that belong together

ICARUS simulation

Aggregate 
particles

Interactions

Foundation for Automation in Particle Image Inference, F. Drielsma

Particles

Paper: PhysRevD.104.072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Reconstruction in LArTPCs

Paper: arXiv:2102.01033

End-to-end ML-based reconstruction chain 
● Sparse CNN for pixel-level features, GrapPA for superstructure formation

Sparse Convolutional NN Graph NN
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https://arxiv.org/abs/2102.01033


Realistic Neutrino + Cosmic ICARUS simulation as a benchmark

● One (two) νμ  
(/ν

e
) + Ar interaction/image

● ~25 cosmic interactions/image (surface detector)

LArTPC Simulation Test Case

67

– TPC boundaries

ICARUS simulation

νμ

Foundation for Automation in Particle Image Inference, F. Drielsma
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νμ-CCQE Selection

● Topology: 1μ1p

● Simplest topology to 
reconstruct

● First test that cosmic ray 
removal works

● First test to ensure the 
reconstruction is 
working at a basic level

νμ selection in ICARUS

Muon

Proton

νμ

68



Traditional (PandoraPFA) ML (ours)

Purity:                62.2 %
Efficiency:        40.0 % (9198 events)

Foundation for Automation in Particle Image Inference, F. Drielsma

νμ selection in ICARUS

69

2.5e20 POT



Traditional (PandoraPFA) ML (ours)

Purity:                62.2 %
Efficiency:        40.0 % (9198 events)

Purity:                84.4 %
Efficiency:        67.8 % (15583 events)
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νμ selection in ICARUS

2.5e20 POT
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ν
e
-CCQE Selection

● Topology: 1e1p

● Flashship measurement 
in SBN (low-energy ν

e 
excess)

● Signal to background 
ratio in the beam: O(10-5)

ν
e
 selection in ICARUS

Electron

Proton

ν
e

71

PandoraPFA ML (ours)

Purity:                
67.0 % 
Efficiency:        
25.3 %

Purity:                

78.3 %
Efficiency:        

62.9 %
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Invariant mass of π0 in ICARUS

Photon 2

Photon 1

Neutral pion invariant mass:

● Standard candle for 
shower energy scale

● Only calibration source 
for EM shower energy

νμ

72

PandoraPFA ML (ours)

Resolution:                
19.8 % 

Resolution:                

12.1 %
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More Physics on the Horizon in SBN

 First DUNE-FD module still 4 years away…

SBN will produce plenty of interesting physics until then:

● Short baseline oscillation test (MiniBooNE anomaly)

● Rich cross-section program (arXiv:1903.04608): 

○ NuMI off-axis @ ICARUS: 10 k ν
e
 / year, higher energy than BNB (up to 3 GeV)

○ BNB @ SBND: 2 M ν / year, O(1) k Λ0 / Σ +
 
hyperons, ~400 ν

e
– e scattering

→ ML chain essential to deliver on these physics goals

73

https://arxiv.org/abs/1903.04608


e-
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Scalability

On ICARUS:

● 1 s / event, leveraging 

GPU acceleration

○ Pandora: 40 s / event 

● ~1.5 M beam events / yr

Implications:

● Fast software 
development (testing)

● Fast turnaround 

Foundation for Automation in Particle Image Inference, F. Drielsma



e-

p+π+
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Impact Beyond Neutrino Physics

Outreach: familiarize physics the community with ML tools

● Targeted ML workshops and schools

○ 2 ICARUS/SBND, 2 SLAC ML Schools, KMI Nagoya ML School (astrophysics), SSI

● Open source software stack and first public LArTPC neutrino dataset

ICARUS/SBND ML Workshop at CSU GNN Lecture at SSI 2023

Foundation for Automation in Particle Image Inference, F. Drielsma



3. The Age of Machines



ML on Simulation ML on Data

Purity:                84.4 %
Efficiency:        67.8 %

Purity:                80.7 %
Efficiency:        52 % (target: >90 %)

Foundation for Automation in Particle Image Inference, F. Drielsma

Performance Drop on Data

77

Purity:
● Handscan 

selected 
events

Efficiency:
● Reconstruct 

handscanned 
events



e-

p+
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Domain Shift
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Source: 
Medium

Supervised Learning

https://medium.com/@metehankozan/supervised-and-unsupervised-learning-an-intuitive-approach-cd8f8f64b644


e-

p+
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Domain Shift
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Source: 
Medium

SimulationSupervised Learning

https://medium.com/@metehankozan/supervised-and-unsupervised-learning-an-intuitive-approach-cd8f8f64b644


e-
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Domain Shift
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Source: 
Medium

Simulation DataSupervised Learning

Domain shift!

https://medium.com/@metehankozan/supervised-and-unsupervised-learning-an-intuitive-approach-cd8f8f64b644


e-

p+
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Addressing the Domain Shift
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What if we could train directly on data?

● Start from raw data = target domain → no domain shift!

● Reduces detector systematics 

Simulation Data Simulation Data
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Addressing the Domain Shift

Foundation for Automation in Particle Image Inference, F. Drielsma

What if we could train directly on data?

● Start from raw data = target domain → no domain shift!

● Reduces detector systematics 

Elephant in the room:

● Raw data has no obvious 
labels, how can we train a 
network on it?

Simulation Data Simulation Data
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Self-Supervision in Large Language Models
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Simple idea: mask known areas of a text, try to reconstruct it

Source

Masked Self-Supervision Learning (SSL)

https://doi.org/10.1016/j.csbj.2021.03.022
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Self-Supervision in Large Language Models
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Self-supervision works incredibly well for Large Language Models (LLMs)

Source

Source

https://doi.org/10.1016/j.csbj.2021.03.022
https://www.softermii.com/blog/how-to-build-a-large-language-model-step-by-step-guide
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Transformers
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 LLMs use transformers to learn correlations between words in a sentence

Words with the same meaning 
are strongly correlated
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Transformers
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 LLMs use transformers to learn correlations between words in a sentence

Words with the same meaning 
are strongly correlated

Unrelated Words are 
not correlated
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Transformers
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 LLMs use transformers to learn correlations between words in a sentence

Words with the same meaning 
are strongly correlated

Complexity: N2

Unrelated Words are 
not correlated
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Transformers
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Transformers can use learned correlations to guess the next word in a sequence

Most likely next word: sea
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Transformers
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Transformers can use learned correlations to guess the next word in a sequence

Most likely next word: sea, 
but let’s pick blue instead

Most likely next word: sea

…
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Raw LArTPC data
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This is what LArTPC data looks like raw…

Wire ID

T
im

e 
ti

ck
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Raw LArTPC data
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This is what LArTPC data looks like raw…

Wire ID

T
im

e 
ti

ck
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Language of Detectors: the Waveform
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At the most basic level, most detectors produce waveforms

● Response of electronics to a charge signal (collected electrons)

Baseline Signal
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Language of Detectors: the Waveform

Foundation for Automation in Particle Image Inference, F. Drielsma

At the most basic level, most detectors produce waveforms

● Response of electronics to a charge signal (collected electrons)

● Information sparse: mostly meaningless noise

● Long: 4096 samples per wire in ICARUS, O(10^4) wires

Baseline Signal
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Language of Detectors: the Waveform
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Can we use Transformers?

● Words: waveform chunks 

● Word representation: value for each tick in chunk

● Information extracted: correlations between waveform chunks
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Denoising
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Naive approach:

1. Mask one to a few ticks of the waveform

2. Train network to reproduce missing region(s), minimize:

a.k.a. L2 loss



e-

p+

96

Denoising
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What you get from

1. Cannot reproduce random noise, baseline is the best fit

2. Can reproduce signal, if visible around the mask region
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Denoising

Foundation for Automation in Particle Image Inference, F. Drielsma

What you get from

1. Cannot reproduce random noise, baseline is the best fit

2. Can reproduce signal, if visible around the mask region

→ Learn signal shape and noise removal
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Denoising
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What if the signal is buried in noise? What if noise looks like signal?
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Denoising
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What if the signal is buried in noise? What if noise looks like signal?

● We have context!
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Denoising

Foundation for Automation in Particle Image Inference, F. Drielsma

What if the signal is buried in noise? What if noise looks like signal?

● We have context! It allows us to infer dead regions effectively
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Tomographic reconstruction
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In LArTPCs, we have 3 projections available

● Game: find correlated signals across 3 planes

Projection 1 Projection 2 Projection 3

Track
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Tomographic reconstruction

Foundation for Automation in Particle Image Inference, F. Drielsma

In LArTPCs, we have 3 projections available

● Game: find correlated signals across 3 planes

● Transformers are correlation machines 3 space points in 3D
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Tomographic reconstruction

Foundation for Automation in Particle Image Inference, F. Drielsma

In LArTPCs, we have 3 projections available

● Game: find correlated signals across 3 planes

● Transformers are correlation machines

Small time chunk = slice in x

y axis u axis v axis

dx

Infer space points/segment 
from correlated wire signals
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Tomographic reconstruction
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In LArTPCs, we have 3 projections available

● Game: find correlated signals across 3 planes

● Transformers are correlation machines

Small time chunk = slice in x

y axis u axis v axis

Infer space points/segment 
from correlated wire signals
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Tomographic reconstruction

Foundation for Automation in Particle Image Inference, F. Drielsma

Feasibility study with GNNs: it can work (TomoGNN)

● Relied on 2D hits being built, signal-based method would not

Drift 
axis

https://github.com/francois-drielsma/tomognn


e-

p+

106

Tomographic reconstruction

Foundation for Automation in Particle Image Inference, F. Drielsma

Feasibility study with GNNs: it can work (TomoGNN)

● Relied on 2D hits being built, signal-based method would not

Drift 
axis

https://github.com/francois-drielsma/tomognn
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Tomographic reconstruction

Foundation for Automation in Particle Image Inference, F. Drielsma

Feasibility study with GNNs: it can work (TomoGNN)

● Relied on 2D hits being built, signal-based method would not

Drift 
axis

https://github.com/francois-drielsma/tomognn
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Generic Artificial Intelligence
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Self-supervised LLMs (e.g. GPT-4) have very interesting properties if

● Built on a very complex model: ~ 1012 parameters

● Given a huge amount of raw training data: ~ 5 x 109 words (45 GB)
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Generic Artificial Intelligence

Foundation for Automation in Particle Image Inference, F. Drielsma

Self-supervised LLMs (e.g. GPT-4) have very interesting properties if

● Built on a very complex model: ~ 1012 parameters

● Given a huge amount of raw training data: ~ 5 x 109 words (45 GB)

→ Can be quickly fine-tuned to perform specific tasks!
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Generic Artificial Intelligence

Foundation for Automation in Particle Image Inference, F. Drielsma

Self-supervised LLMs (e.g. GPT-4) have very interesting properties if

● Built on a very complex model: ~ 1012 parameters

● Given a huge amount of raw training data: ~ 5 x 109 words (45 GB)

→ Can be quickly fine-tuned to perform specific tasks!

Fine-tuning



Generic Artificial Intelligence

Instead: give a lot of 
raw waveform data 
to a large model
● Learn a general 

raw data 
representation 

useful to all  reco. 

tasks
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?

Foundation model

Fine tuning
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Center for Research on Foundation Models
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Unique opportunity to collaborate with and contribute to the CRFM

● Support and experts to mitigate the risks associated with this endeavor

Research on long sequence processing:

● FlashAttention: speed-up by 
localizing computations on GPU

● S4/Mambda Model: subquadratic 
implementation of a state-space 
model with FM properties

● HyenaDNA: 420k “words”

https://crfm.stanford.edu/research.html
https://arxiv.org/pdf/2205.14135.pdf
https://web.stanford.edu/group/fan/S4/
https://arxiv.org/pdf/2306.15794.pdf


Self-Supervision beyond LArTPC
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Waveform data is ubiquitous in science and industry

→ Successful self-supervision on raw waveform data has implications well 

beyond LArTPCs alone, synergies at SLAC 

LZ (light)nEXO (charge)



Self-Supervision beyond LArTPC
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Waveform data is ubiquitous in science and industry

→ Successful self-supervision on raw waveform data has implications well 

beyond LArTPCs alone, synergies at SLAC 

→ Science for AI/ML

Heartbeat (EKG), 
brain (EEG)

LZ (light)nEXO (charge) Music (sound)
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Conclusions
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LArTPCs are at the core of the US-based accelerator neutrino program

● DUNE and SBN cannot succeed without a high-quality reconstruction

● Partially automated the reconstruction from space point to interactions

○ New state-of-the-art on 3 LArTPC experiments

● Clear road-map towards foundation models in waveform data

○ Address the remaining challenges in LArTPCs and open a new pole of research


