

Vector Like Dorks (listed below)

Andrew(retired), Chinhsan, Dylan, Emily & Simonas

The question (outline)

Precision measurements tell us that **if new heavy quarks are discovered** (i.e., beyond the usual 3 generations), they cannot be `just' another fourth generation but **must be** `**vector-like'** quarks (VLQ) instead.

- What measurements force us into this VL nature expectation?
- What are VLQs and by what mechanisms may such states actually be discovered?
- Most recent search results in colliders
- The future of VLQ searches
- Can VLQ discovery be somehow cleverly evaded by other new physics?

Motivation

Why not a 4th generation of quarks?

- Higgs is produced by gluon-gluon fusion through a fermion loop
- Heavy fermions **do not decouple** \rightarrow "generation counter"

- Chiral 4th generation ruled out by experiment
 - Adding a heavy quark doublet would increase the rate of $gg \rightarrow H by \sim 9x$

$$\left(rac{1/3+1/3+1/3}{1/3}
ight)^2=9$$

- Additional constraints from EW fits (oblique parameters)
- Even invisible Z decays

Escape Y~m?

- If $m_Q \sim Y_Q v + M_Q$ and for large masses $m_Q \sim M_Q$

$$\stackrel{g}{\xrightarrow{t}}$$
 $\stackrel{t}{\xrightarrow{t}}$ $\stackrel{H}{\xrightarrow{t}}$ $\stackrel{H}{\xrightarrow{t}}$ $\sim m_Q Y_Q \int dx dy \left(\frac{1-4xy}{m_Q^2 - m_H^2 xy} \right) \xrightarrow{m_Q \sim M_Q \gg m_H} \frac{Y_Q}{M_Q} \approx 0$

• If the quark masses are not entirely due to EW SSB, then a "4th" generation is possible!

Challenge for a 4th generation

- Can we introduce extra heavy quarks to the SM without proportionally strong Yukawa couplings?
 - LH fermions are SU(2) doublets, but RH fermions are SU(2) singlets
 - One cannot form gauge-invariant mass terms! SSB is needed!

• But...

- **Color triplet** -> has QCD color charge (like quarks)
- **Spin ¹/2** -> fermion (like quarks)
- Equal left- and right-handed transformations under SU(2)

$$egin{pmatrix} ar{u}_L & ar{d}_L \end{pmatrix} M egin{pmatrix} u_R \ d_R \end{pmatrix}$$

$\checkmark \rightarrow$ Vector-like nature!

12. CKM Quark-Mixing Matrix

What can VLQs solve?

- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ in SM, but 2.3 σ tension with unitarity from measurements $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.09984 \pm 0.0007$
 - Extra quarks would lead to a larger overall mixing matrix
- Possible in Randall-Sundrum warped extra dimensional models (KK modes) related to hierarchy problem
- Possible in GUT scenarios (e.g. part of SU(6), E6)
- Spontaneous CPV from vacuum of extended scalar sector (coupling of vector-like quark to complex scalar singlet + mixing → generates complex CKM matrix), solves strong CP problem

Vector-Like Quarks

THE MOMENT YOU FIND A Brilliant SOLUTION

Possible Vector Like Quarks?

	Singlets		Doublets		Triplets		
Multiplet	Т	В	$\begin{pmatrix} T \\ B \end{pmatrix}$	$\begin{pmatrix} X \\ T \end{pmatrix}$	$\begin{pmatrix}B\\Y\end{pmatrix}$	$\begin{pmatrix} X \\ T \\ B \end{pmatrix}$	$\begin{pmatrix} T \\ B \\ Y \end{pmatrix}$
$SU(2)_L U(1)_Y$	$\frac{1}{2/3}$	$\frac{1}{-1/3}$	2 1/6	2 7/6	$\frac{2}{-5/6}$	3 2/3	${f 3} \\ -1/3$

Electric charge: T: 2/3; B: -1/3; X: 5/3; Y: -4/3

VLQ roadmap (<u>2304.10561v3</u>) CMS ICHEP 2024

9

Mass generation

"Color triplet spin 1/2 fermions with equal left- and right- handed SU(2) chiral transformation"

$${\cal L}_{
m mass} = - ar Q_L M_Q Q_R + h.\,c. + {
m Yukawa!}$$

(Taking singlets)

$$\mathscr{L}_{\text{mass}} = -\left(\overline{u}_{L}^{0} \quad \overline{\mathsf{T}}_{L}^{0}\right) \mathcal{M}_{u} \begin{pmatrix} u_{R}^{0} \\ \mathsf{T}_{R}^{0} \end{pmatrix} - \left(\overline{d}_{L}^{0} \quad \overline{\mathsf{B}}_{L}^{0}\right) \mathcal{M}_{d} \begin{pmatrix} d_{R}^{0} \\ \mathsf{B}_{R}^{0} \end{pmatrix} + \text{h.c.}$$

$$\mathcal{M}_{q} = \left(\underbrace{m_{q}}_{\overline{M_{q}}} \quad M_{q}}_{\overline{M_{q}}}\right) \Big\}_{n_{q}}^{3} \quad \text{where } m_{q} = \frac{v}{\sqrt{2}}Y_{q} \text{ and } \overline{m}_{q} = \frac{v}{\sqrt{2}}\overline{Y_{q}}$$

$$\text{New Yukawa to RH fields}$$
New mass terms due to T and B
$$\text{VLQ roadmap (2304.10561v3)}$$
10

52nd SLAC Summer Institute

August 2024

VLQ interactions

- Mixing matrix is non-unitary in general, so is the CKM matrix, that is determined by the upper left 3*3 block.

 \mathcal{V}^q_{χ} diagonalizes the mass matrix, hence must be unitary, but not A and B!!

- Since only the SM model quarks is charged under SU(2), the mixing matrix $V \equiv A_L^{u\dagger} A_L^d$, need not be unitary.
- FCNC now exists at tree-level: for example Z-mediated interaction:

$$\mathscr{L}_Z = -rac{g}{2\cos heta_W}igg[ig(ar{u}_L \quad ar{T}_Lig)F^u\gamma^\muigg(ar{u}_L\ T_Ligg) -ig(ar{d}_L \quad ar{B}_Lig)F^d\gamma^\muigg(ar{d}_L\ B_Ligg) - 2\sin^2 heta_WJ_{
m em}^\muigg]Z_\mu, \quad F^u\equiv VV^\dagger, \quad F^d\equiv V^\dagger V$$

August 2024

Detecting VLQs

• The dominant decay modes of VLQs are to third-generation SM quarks

- The dominant decay modes of VLQs are to third-generation SM quarks
 - Decay into 1st and 2nd gen quarks is not forbidden, it is 'not favoured'
 - These channels do not address the hierarchy problem

- The dominant decay modes of VLQs are to third-generation SM quarks
 - Decay into 1st and 2nd gen quarks is not forbidden, it is 'not favoured'
 - These channels do not address the hierarchy problem
 - Most experiments limit their search to Q decaying to t or b and some boson

ATLAS (<u>2401.17165</u>)

52nd SLAC Summer Institute

15

 ATLAS & CMS mostly look into the decay of SU(2) singlets and doublets

		Decays
Singlet	T	$T \rightarrow bW^+, tZ, tH$
	B	$B \to t W^-, b Z, b H$
Doublet	(T,B)	$T \rightarrow tZ, tH, B \rightarrow bW^-$
	(X,T)	$X \to tW^+, T \to tZ, tH,$
	(B,Y)	$B \rightarrow bZ, bH, Y \rightarrow bW^-$

ATLAS ICHEP 2024

16

Detecting VLQs: Production

Experimental searches divided into two categories:

Within single and pair production there are a couple of options:

g

52nd SLAC Summer Institute

Q

19

Within single and pair production there are a couple of options:

- Strong production:
 - \circ $\,$ Depends on strong coupling constant and mass of T $\,$
 - More model independent as cross section only depends on mass of T

Within single and pair production there are a couple of options:

- Strong production:
 - \circ $\,$ Depends on strong coupling constant and mass of T $\,$
 - More model independent as cross section only depends on mass of T
- EW production:
 - Cross section dependent on coupling to (regular) quarks; coupling strength changes with choice of VLQ mass and width
 - Relatively heavy VLQs can be investigated

Within single and pair production there are a couple of options:

- Strong production:
 - Depends on strong coupling constant and mass of T
 - More model independent as cross section only depends on mass of T
- EW production:
 - Cross section dependent on coupling to (regular) quarks; coupling strength changes with choice of VLQ mass and width
 - Relatively heavy VLQs can be investigated

• Way too many channels to show

VLQs

August 2024

Production mode	Decay mode	Channel
ΤT	bW, tH, tZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$
$B\overline{B}$	tW, bH, bZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$
$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ
$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ
Т	tZ	bqq $\ell\ell$, bqq bb, bqq $\nu\nu$
	tH	bqq $\gamma\gamma$, bqq bb
	bW	b ℓv
В	bH	b bb
	tW	bqq ℓu , b ℓu qq, bqq qq
X _{5/3}	tW	bqq ℓu , b ℓu qq, bqq qq
Y _{4/3}	bW	b ℓν
$Z' \to T\overline{T}$	bW	0\ell
	tH, tZ	1ℓ
$W^\prime \to T b$	tH, tZ	0ℓ <u>CMS May 2024</u>
$W' \to Bt$	bH, bZ	0ℓ (2405.17605)
	F2	23
	52nd	SLAC Summer Institute

	Production mode	Decay mode	Channel
 Way too many channels to sho 	W TT	bW, tH, tZ	0ℓ , 1ℓ , OS 2ℓ , SS 2ℓ , 3ℓ
	$B\overline{B}$	tW, bH, bZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$
	$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ
	$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ
 Short answer: 	Т	tΖ	bqq $\ell\ell$, bqq bb, bqq $\nu\nu$
VLQs have not been detected		tH	bqq $\gamma\gamma$, bqq bb
		bW	b ℓv
	В	bH	b bb
		tW	$bqq \ell v, b\ell v qq, bqq qq$
	X _{5/3}	tW	$bqq \ell v, b\ell v qq, bqq qq$
	Y _{4/3}	bW	b ℓv
	$Z' \to T\overline{T}$	bW	0ℓ
		tH, tZ	1ℓ
	$W' \to Tb$	tH, tZ	0ℓ <u>CMS May 2024</u>
	$W' \to Bt$	bH, bZ	$0\ell \frac{(2405.1/605)}{24}$
August 2024	VLQs	52 <u>nd</u>	SLAC Summer Institute

	Production mode	Decay mode	Channel
 Way too many channels to sho 	TT WC	bW, tH, tZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$
	$B\overline{B}$	tW, bH, bZ	$0\ell, 1\ell, OS 2\ell, SS 2\ell, 3\ell$
	$X_{5/3}\overline{X}_{5/3}$	tW	1ℓ , SS 2ℓ
	$Y_{4/3}\overline{Y}_{4/3}$	bW	1ℓ
 Short answer: 	Т	tZ	bqq $\ell\ell$, bqq bb, bqq $\nu\nu$
VLOs have not been detected		tH	bqq $\gamma\gamma$, bqq bb
		bW	b ℓv
	В	bH	b bb
		tW	bqq ℓv , b ℓv qq, bqq qq
	X _{5/3}	tW	bqq ℓv , b ℓv qq, bqq qq
Highlight some of the most recent	Y _{4/3}	bW	b ℓν
	$Z' ightarrow T\overline{T}$	bW	0ℓ
constraints		tH, tZ	1ℓ
	$W' \to Tb$	tH, tZ	0ℓ <u>CMS May 2024</u>
	$W' \to Bt$	bH, bZ	$0\ell \qquad \frac{(2405.17605)}{6}$
August 2024		52nd	25 SLAC Summor Institute
August 2024	VLQS	JZIIU	SLAC Summer Institute

ATLAS Highlights

August 2024

VLQs

Detecting VLQs

Pair production of heavy T?

August 2024

VLQs

27 52nd SLAC Summer Institute

ATLAS ICHEP 2024

Detecting VLQs

Limits on pair production of heavy T

No discovery, but can use this to place precise constraints on production σ

ATLAS ICHEP 2024

August 2024

VLQs

52nd SLAC Summer Institute

29

August 2024

Detecting VLQs

CMS ICHEP 2024

Constraints on production cross section

		32
gust 2024	VLQs	52nd SLAC Summer Institute

Αι

Constraints on BB pair production

52nd SLAC Summer Institute

CMS ICHEP 2024

Detecting VLQs: remarks

• No evidence for VLQs observed (yet?)

August 2024

VLQs

Detecting VLQs: remarks

- No evidence for VLQs observed (yet?)
- Analyses techniques and strategies are steadily improving
 - Techniques can be used by other non BSM analyses in ATLAS & CMS

August 2024

VLQs

Detecting VLQs: remarks

- No evidence for VLQs observed (yet?)
- Analyses techniques and strategies are steadily improving
 - Techniques can be used by other non BSM analyses in ATLAS & CMS
- Much stronger constraints wrt Run 1
 - Able to constrain up to a much higher mass and with much higher precision

Vector-Like Quarks in the future

August 2024

VLQs

ATLAS ICHEP 2024

Future Search Prospects

Pair production via strong interaction, then $Q \rightarrow Wq$, where q is a light quark

- Most searches focused on coupling to heavy quarks
- Some models (e.g. LRMM, E6 GUTs) predict lightest VLQ coupling mostly to lightest SM quarks

Future Search Prospects

VLOs

Cross Section (pb)

- HL-LHC
 - 3σ exclusion limits and 5σ discovery within reach for 600-1000 GeV mass (<u>ATLAS ICHEP</u> 2024)
- FCC-hh
 - 5σ discovery for pair produced down-type VLQs can be increased to 2980 GeV and to 2.1 TeV for up-type VLQs (<u>Down type</u> iso-singlet quarks at the HL-LHC and FCC-hh, Search for single production of vectorlike top partners through thth channel at the HE-LHC and FCC-hh)
- Muon collider
 - Production of TeV-mass VLQ enhanced for μμ annihilation (<u>The</u> <u>Muon Smasher's Guide</u>)

HL-LHC FCC-hh κ_ = 0.1 HE-LHC - pp→TT 10 FCC-hh 10 pp→Tbj (κ₊=0.1) $pp \rightarrow T\overline{b}j (\kappa_{+}=0.2)$ Cross Section (pb) 10 10 10 10 10 10-4 (b) (a) 10-5 10 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 m_ (GeV) m_T (GeV)

August 2024

Alternative to Vector-Like Quarks

August 2024

VLQs

Does not quack like a VL-quack?

$$\begin{array}{c} \begin{array}{c} \mathsf{g} \\ \mathsf{f} \\ \mathsf{g} \\ \mathsf{f} \\ \mathsf{f$$

- Crucially, for a `normal' 4th generation $Y_Q \sim m_Q$
- What if the signs of Yukawa couplings are opposite (wrong)?

$$\sim Y_Q m_Q \int dx dy \left(rac{1-4xy}{m_Q^2-m_H^2 xy}
ight) - Y_{Q'} m_{Q'} \int dx dy \left(rac{1-4xy}{m_{Q'}^2-m_H^2 xy}
ight)$$

$$rac{m_{Q,Q'}\gg m_H}{\longrightarrow} rac{Y_Q}{m_Q} - rac{Y_{Q'}}{m_{Q'}}pprox 0?$$

Can it quack like that?

- In the SM field redefinitions can absorb the sign (phase) of the Yukawas → extend the scalar sector!
- In 2HDM-II the signs are controlled by mixing parameters
 - \circ $\,$ a neutral scalar mixing, β doublet/vev mixing angle

$$\cos \left(\beta - \alpha\right) = \frac{r}{\tan \beta},$$

$$\kappa_V^{\text{II}} \approx 1, \qquad \kappa_u^{\text{II}} \approx 1, \qquad \kappa_{d,\ell}^{\text{II}} \approx 1 - r.$$

• r=2 gives the wrong sign limit!

VLQ vs. Wrong Sign?

- VLQ would be "off the charts"
- If "on the charts" then definitely additional new physics!
 - e.g. extended scalar sector

WHAT IS THE MAIN POINT?

It's friends we made along the way

August 2024

We found the VLQs!!!!!

August 2024

VLQs

Bonus Harolds

