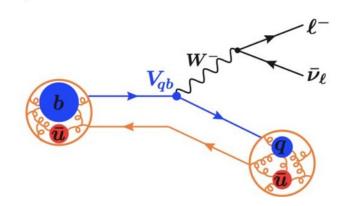
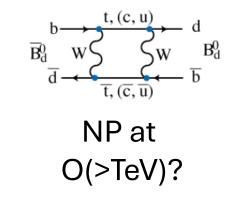
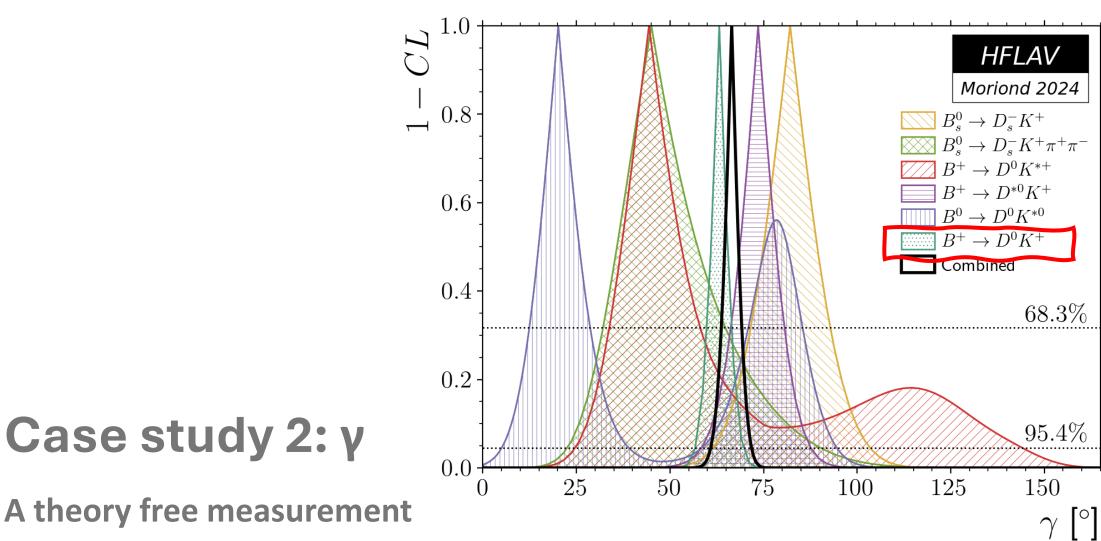

Lecture 2

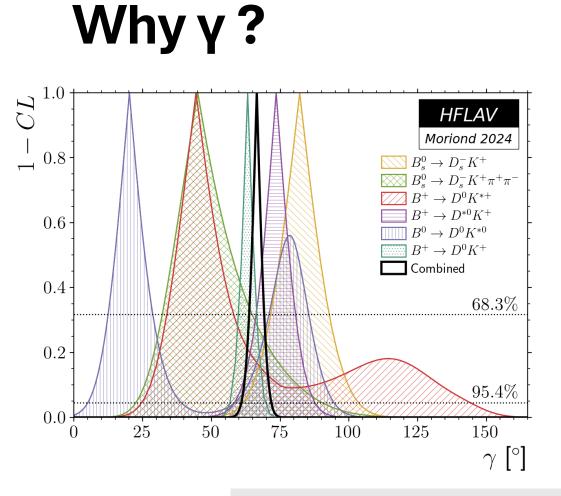

Lecture plan

- A brief introduction to flavour
- Cabibbo-Kobayashi-Maskawa quark-mixing matrix
- Main experimental players: Belle II and LHCb
- Case study 1: V_{cb}
- Case study 2: γ − *CP* violating phase ← HALFTIME somewhere here
- Beyond the *b* quark: charm physics
- Case study 3: CP violation in D mesons
- Beyond the quarks: tau physics
- Case study 4: lepton-flavour universality and tau mass
- Outlook


Today the goal is over constraint – loop sensitivity



Tree level only



Loop-level only

A theory free measurement

$$\gamma_{\text{measured}} = (66 \pm 3)^{\circ}$$
 HFLAV
 $\gamma_{\text{predicted}} = (66 \pm 1.3)^{\circ}$ CKMfitter
 $\beta_{\text{measured}} = (22.6 \pm 0.5)^{\circ}$ HFLAV

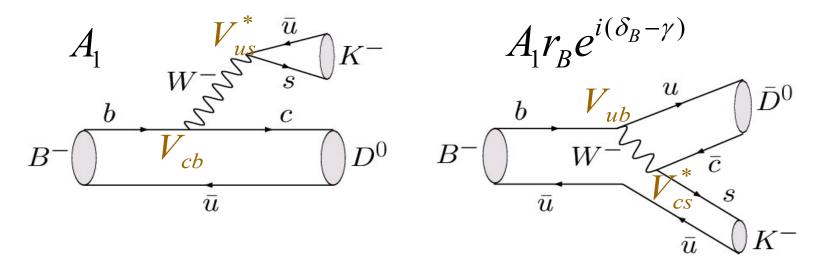
Principal experimental goal in CKM physics in the next decade is to reduce uncertainty to 1^o

What is γ?

• If it is CP violation only in mixing (the short-lived state is not only K_1), the phenomenology is simple. Define ϵ_K so that

 $|K_S\rangle = |K_1\rangle - \epsilon_K |K_2\rangle$ $|K_L\rangle = |K_2\rangle + \epsilon_K |K_1\rangle$ where K_S is the short-lived state and K_L is the long-lived state.

K. McFarland Day 1


- It is basically the irreducible weak phase of $V_{\rm ub},$ i.e., the phase of the CKM matrix – origin of CP violation

• $V_{ub} \neq (V_{ub})^*$

- How to observe as all rates proportional to $|V_{qq'}|^2$?
- Interference between two different amplitudes
 - 1. In mixing neutral kaon decay (see Day 1)
 - 2. Interference between mixing and decay
 - two paths mixed or unmixed to the same final state
 - <u>The triumph of Babar and Belle</u>: sin2 β in from time-dependent CP violation in $B^0 \rightarrow K^0_s J/\psi$
 - 3. In decay (direct) $\mathcal{A}_{f^{\pm}} \equiv \frac{\Gamma(M^- \to f^-) - \Gamma(M^+ \to f^+)}{\Gamma(M^- \to f^-) + \Gamma(M^+ \to f^+)} \neq 0$

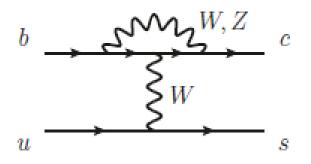
M⁺ = charged meson, e.g., B⁺ f⁺ and f⁻ CP conjugate of the final state

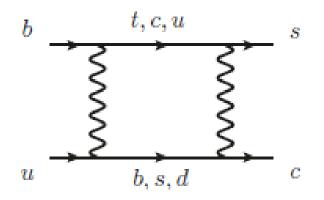
Measuring $\gamma: B \rightarrow DK$

- Same final state for D and $\overline{D} \Rightarrow$ interference \Rightarrow the possibility of DCPV
- Different types of D final states generally used
 - 1. Self-conjugate multibody states: K_sh⁺h⁻ [Dalitz/BPGGSZ]

Giri, Grossman, Soffer and Zupan, PRD 68, 054018 (2003); Bondar (unpublished)

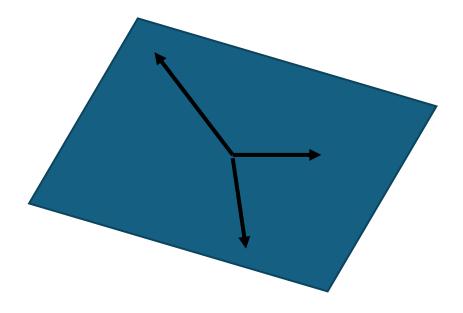
2. CP-eigenstates [GLW]

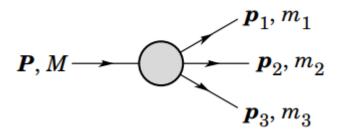

Gronau & London, PLB **253**, 483 (1991), Gronau, & Wyler, PLB **265**, 172 (1991)


3. $K^+X^-(X^-=\pi^-, \pi^-\pi^0, \pi^-\pi^-\pi^+)$ - CF and DCS [ADS]

Atwood, Dunietz & Soni, PRD **63**, 036005 (2001)

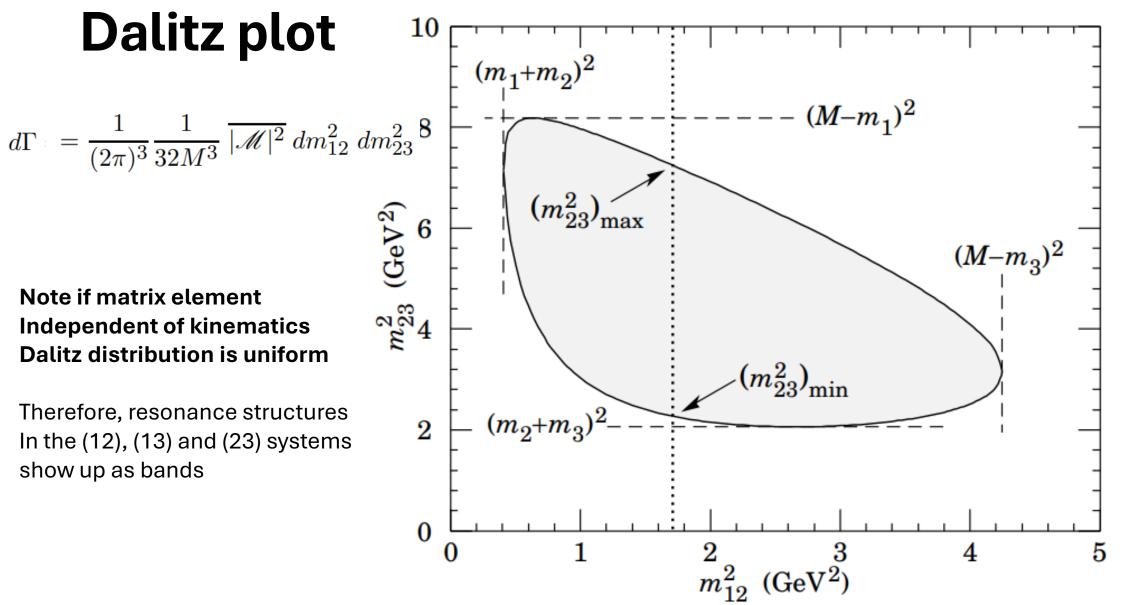
Theory plays no role

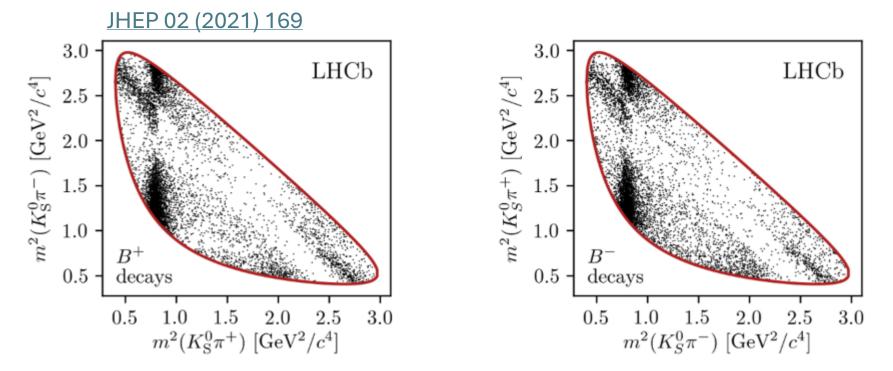

- At least three parameters common to all $B \rightarrow DK$
 - Amplitude ratio $r_{B_{\!\scriptscriptstyle A}}$ strong phase difference δ_{B} and γ
 - First two in principle calculable from QCD but very hard c.f. hadronic states to measure V_{cb}
 - However, if you have enough measurements of different D final states or in bins of the D phase space you determine these from data along with γ
- First amplitude that could disrupt this introduces a relative correction of order 10^{-7} on $\gamma \underline{JHEP \ 1401}$ (2014) 051
- Will focus on the most measurement
 - $B^- \rightarrow D(K_s h^+ h^-) h^-$
 - CP violation measured across the three-body phase space (Dalitz plot) of the D decay



Dalitz plot

- Considering a scalar or pseudoscalar decaying into a three-body final state how many variables are required to describe it?
 - 3 four-momenta = 12 variables
 - Constraints:
 - Energy-momentum conservation = 4
 - Particle masses = 3
 - Orientation of decay plane choice = 3
- 12-10 = two-independent variables


Dalitz plot: math


• Following (and figures) from PDG kinematics review general form with just the kinematic constraints - energies in rest frame of M and α , β and γ are Euler angles to define the orientation

$$d\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M} \left| \mathscr{M} \right|^2 dE_1 dE_3 d\alpha d(\cos\beta) d\gamma$$

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{8M} \overline{|\mathcal{M}|^2} dE_1 dE_3 \qquad (p_i + p_j)^2 = m_{ij}^2$$

$$= \frac{1}{(2\pi)^3} \frac{1}{32M^3} \overline{|\mathcal{M}|^2} dm_{12}^2 dm_{23}^2 \qquad (p_i + p_j)^2 = (P - p_k)^2 = M^2 + m_k^2 - 2P \cdot p_k$$

$$\Rightarrow (p_i + p_j)^2 = (P - p_k)^2 = M^2 + m_k^2 - 2P \cdot p_k$$

$$\therefore m_{ij}^2 = M^2 + m_k^2 - 2ME_k$$

$B^{-} \rightarrow D(K_{s}h^{+}h^{-})h^{-}$ Dalitz plots

- First measurements from BaBar and Belle fit the whole Dalitz plot to an amplitude model of resonances $K^*\pi$, $K\rho$ etc. but the answer depends on the number of amplitudes included and the parameters of the model
 - Uncertainties up to 10 degrees on $\boldsymbol{\gamma}$

What if you bin the Dalitz?

- The $B^- \rightarrow DK^-$ amplitude at each point in the Dalitz plot $A_B(m_-^2, m_+^2) \propto A_D(m_-^2, m_+^2) + r_B^{DK} e^{i(\delta_B^{DK} - \gamma)} A_{\overline{D}}(m_-^2, m_+^2)$
- Find $|A_{R}|^{2}$ integrated over each bin to get expression like $N_{+i}^{-} = h_{B^{-}} \left[F_{+i} + \left(\left(x_{-}^{DK} \right)^2 + \left(y_{-}^{DK} \right)^2 \right) F_{-i} + 2\sqrt{F_i F_{-i}} \left(x_{-}^{DK} c_{+i} + y_{-}^{DK} s_{+i} \right) \right]$

$$3.0$$

$$2.5$$

$$2.0$$

$$2.0$$

$$2.5$$

$$2.0$$

$$0.5$$

$$1.0$$

$$0.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$2.5$$

$$3.0$$

$$1.4$$

$$3$$

$$2$$

$$1.0$$

$$0.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$2.5$$

$$3.0$$

$$m_{+}^{2} [\text{GeV}^{2}/c^{4}]$$

h is norm factor

where this are the number of B^{-} events in the +i bin with

 $F_{i} = \frac{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \eta(m_{-}^{2}, m_{+}^{2})}{\sum_{i} \int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \eta(m_{-}^{2}, m_{+}^{2})}$ [Fraction of D decays in each bin inc. acceptance η]

 $x_{\pm}^{DK} \equiv r_{B}^{DK} \cos(\delta_{B}^{DK} \pm \gamma)$ and $y_{\pm}^{DK} \equiv r_{B}^{DK} \sin(\delta_{B}^{DK} \pm \gamma)$. [What we want to know?]

 $c_{i} \equiv \frac{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})| |A_{D}(m_{+}^{2}, m_{-}^{2})| \cos \left[\delta_{D}(m_{-}^{2}, m_{+}^{2}) - \delta_{D}(m_{+}^{2}, m_{-}^{2})\right]}{\sqrt{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{+}^{2}, m_{-}^{2})|^{2}}}$

[Amplitude weighted average of the strong phase difference between D⁰ and D⁰ bar] 50

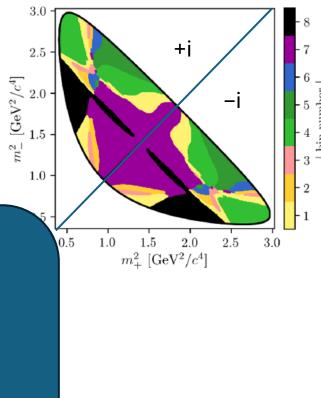
What if you bin the Dalitz?

• The amplitude at each point in the Dalitz plot is

 $A_B(m_-^2,$

• Find |A_B|

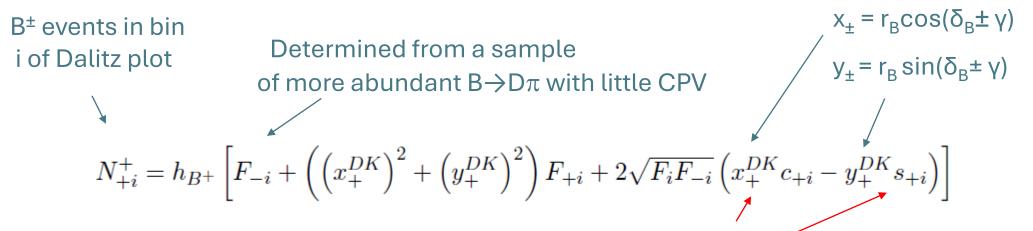
 $N_{+i}^{+} = h_{B^{+}}$


where this $F_i = \frac{\int_i dm}{\sum_i \int_{-i} dm}$

Important assumption $A_D(m_-^2, m_+^2) = A_{\overline{D}}(m_+^2, m_-^2),$ i.e., no CP violation in D decay Looks intimidating but derivation is simple: do it over lunch? nc. acceptance η]

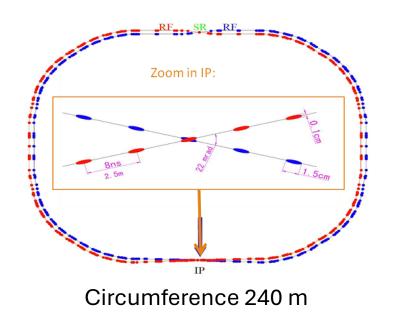
 $x_{\pm}^{DK} \equiv r_B^{DK} \cos(\delta_B^{DK} \pm \gamma)$ and $y_{\pm}^{DK} \equiv r_B^{DK} \sin(\delta_B^{DK} \pm \gamma)$. [What we want to know]

 $c_{i} \equiv \frac{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})| |A_{D}(m_{+}^{2}, m_{-}^{2})| \cos \left[\delta_{D}(m_{-}^{2}, m_{+}^{2}) - \delta_{D}(m_{+}^{2}, m_{-}^{2})\right]}{\sqrt{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{+}^{2}, m_{-}^{2})|^{2}}}$


[Amplitude weighted average of the strong phase difference between D⁰ and D⁰ bar] 51

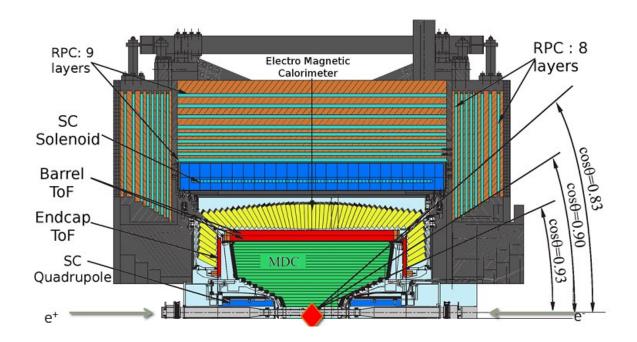
2.5

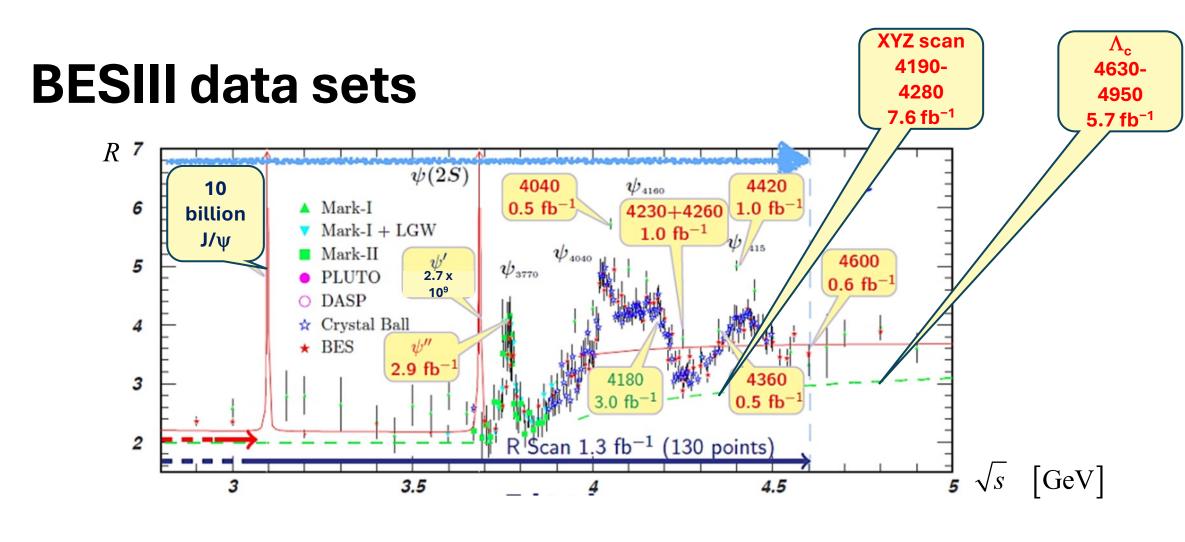
Dalitz model-independent method


Binned fit proposed by Giri *et al.* [PRD 68 (2003) 054018] and developed by Bondar & Poluektov [EPJ C 55 (2008) 51; EPJ C47 (2006) 347] removes model dependence by relating events in bin i of Dalitz plot to *experimental observables*.

c_i,s_i: average in bin of cosine, sine of strong phase difference Choosing bins of *expected* similar strong phase difference maximises statistical precision – currently 16 bins – **if you know ci and si** loss in statistical sensitivity w.r.t. unbinned result is ~20% **but no model error!**

BEPCII and BESIII

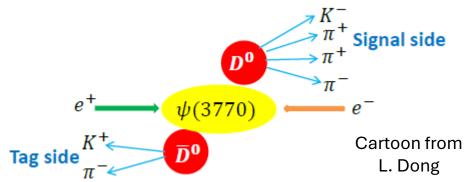

- e⁺e⁻ collisions to directly produce charmonium
- $\sqrt{s} = 2.0 4.9 \, \text{GeV}$
- Achieved design instantaneous luminosity of $10^{33}\,cm^{-2}s^{-1}$

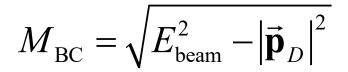


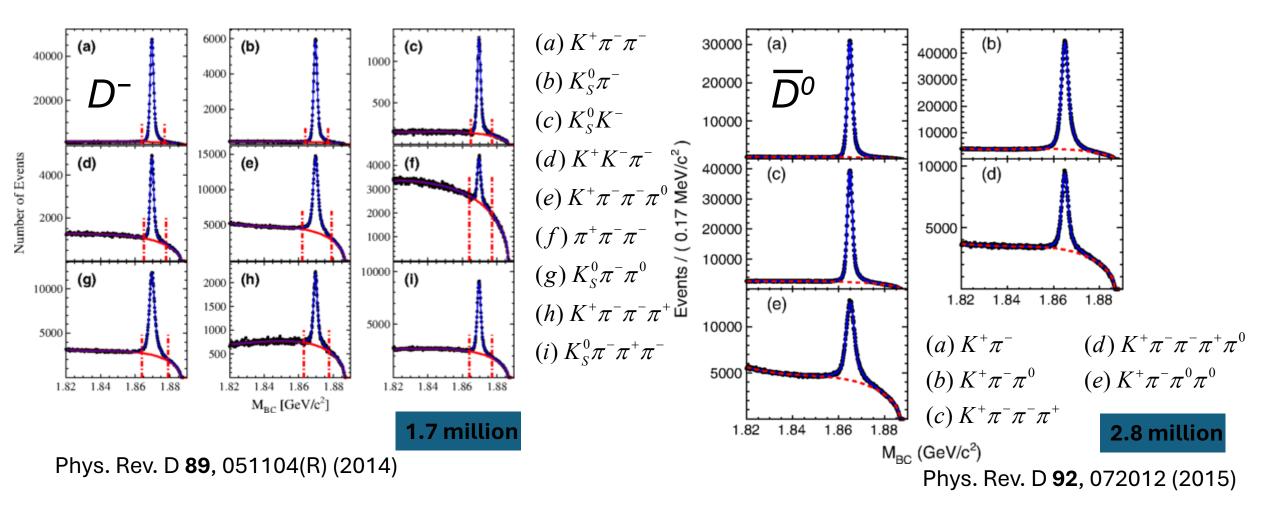
BESIII

93% of 4π

Main drift chamber + 1 T superconducting solenoid $\rightarrow \sigma_p/p = 0.5\% @ 1 \text{ GeV} + dE/dx \text{ for PID}$ TOF system with $\sigma = 100 \text{ ps} (110 \text{ ps})$ in barrel (endcap) Electromagnetic calorimeter with $\sigma_E/E = 2.5\%$ @ 1 GeV RPC muon system embedded in flux return




\sqrt{s} (GeV)	Dominant processes of interest	Integrated luminosity (fb ⁻¹)	× CLEO-c
3.773	$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}{}^0/D^+D^-$	2.93 + (17 this year)	3.6


The "single vs. double-tag" techniques

- Threshold production means that no other particles are produced along with the DD or DD* pair
- Full event reconstruction "double tag" possible
 - Advantages
 - 1. absolute branching fractions
 - 2. full kinematic constraint to reconstruct v or long-lived neutral hadron (neutron or K_L^0), and
 - 3. low backgrounds (i.e. amplitude analyses)
 - 4. Access to quantum correlation
 - Disadvantage
 - 1. reduced reconstruction efficiency

Single tag samples

Quantum correlated measurements

At the ψ (3770) neutral *D* pairs produced in quantum-entangled state:

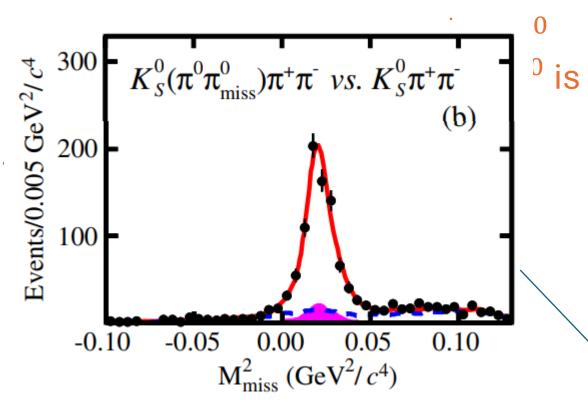
$$e^+e^- \rightarrow \psi'' \rightarrow \frac{1}{\sqrt{2}} \left[D^0 \overline{D}^0 - \overline{D}^0 D^0 \right]$$
$$e^+e^- \rightarrow \psi'' \rightarrow \frac{1}{\sqrt{2}} \left[D_{CP-} D_{CP+} - D_{CP+} D_{CP-} \right]$$
where $D_{CP\pm} = \frac{1}{\sqrt{2}} \left[D^0 \pm \overline{D}^0 \right]$

Reconstruct one $D \rightarrow K_s \pi \pi$ and the other in a *CP* eigenstate such as *KK*, $K_s \pi^0$ then *CP* of the other is fixed

$$CP \pm \text{tagged yield in bin } i \propto F_i + F_{-i} \pm 2c_i \sqrt{F_i F_{-i}}$$

Also tag with $K_S \pi \pi$ tag

fractional D^0 yield in each bin


Yield in bin *i* tagged by bin
$$j \propto F_i F_{-j} + F_{-i} F_j - 2 \sqrt{F_i F_{-j} F_{-i} F_j} (c_i c_j + \frac{s_i s_j}{s_j})$$

PRL **124** (2020) 241802 PRD **101** (2020) 112002

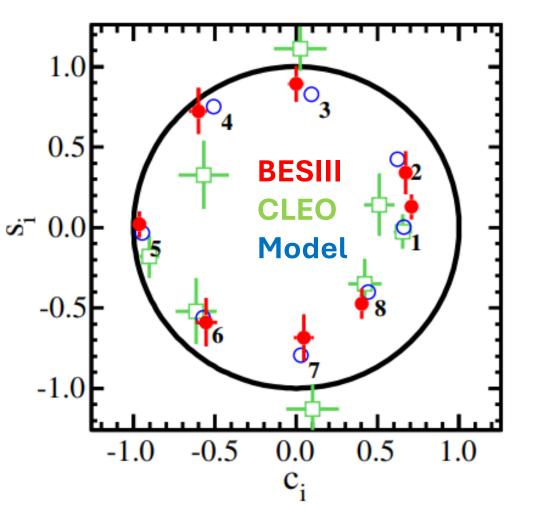
Precision flavour physics - Jim Libby

Yields

2.93 fb⁻¹ of data compared with 0.82 fb⁻¹ for CLEO – PRD **82** (2010) 112006

Mode	$N_{\mathrm{DT}}^{K_S^0\pi^+\pi^-}$	$N_{ m DT}^{K_L^0\pi^+\pi^-}$			
$K^+ \pi^-$	4740 ± 71	9511 ± 115			
$K^+ \pi^- \pi^0$	5695 ± 78	1906 ± 132			
$K^+\pi^-\pi^-\pi^+$	8899 ± 95	19225 ± 176			
$K^+ e^- \nu_e$	4123 ± 75				
CP-even tags					
$K^+ K^-$	443 ± 22	1289 ± 41			
$\pi^+\pi^-$	184 ± 14	531 ± 28			
$K^0_S \pi^0 \pi^0$	198 ± 16	612 ± 35			
$\pi^+\pi^-\pi^0$	790 ± 31	2571 ± 74			
$K_L^0 \pi^0$	913 ± 41				
CP-odd tags					
$K^0_S \pi^0$	643 ± 26	861 ± 46			
$K^0_S \eta_{\gamma\gamma}$	89 ± 10	105 ± 15			
$K^0_S \eta_{\pi^+\pi^-\pi^0}$	23 ± 5	40 ± 9			
$K_S^0 \omega$	245 ± 17	321 ± 25			
$K^0_S\eta'_{\pi^+\pi^-\eta}$	24 ± 6	38 ± 8			
$K^0_S \eta'_{\gamma \pi^+ \pi^-}$	81 ± 10	120 ± 14			
$K_L^0 \pi^0 \pi^0$	620 ± 32				
Mixed-CP tags					
$K^0_S \pi^+ \pi^-$	899 ± 31	3438 ± 72			
$K^0_S \pi^+ \pi^- onumber \ K^0_S \pi^+ \pi^{ m miss}$	224 ± 17				
$K_S^0(\pi^0\pi_{\rm miss}^0)\pi^+\pi^-$	710 ± 34	58			

120 -t -=


--0

Results

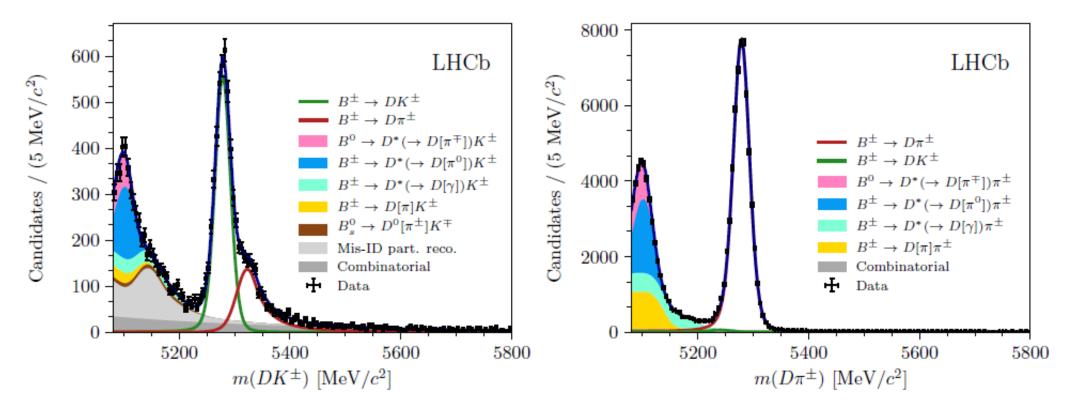
PRL **124** (2020) 241802 PRD **101** (2020) 112002

- Three different binning schemes some for γ measurements
- Use equal strong-phase binning $\pi/4$ intervals
- Fit binned quantum-correlated vields to extract

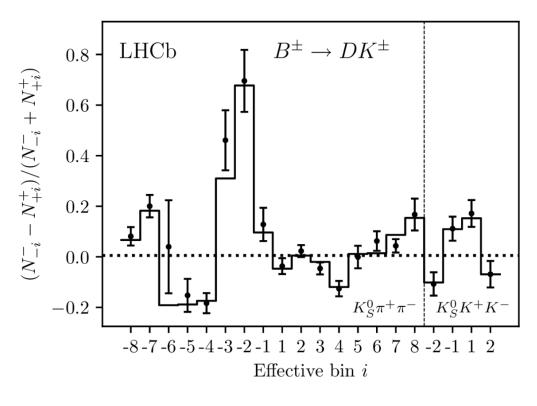
	Ci	Si
1	$0.708 \pm 0.020 \pm 0.009$	$0.128 \pm 0.076 \pm 0.017$
2	$0.671 \pm 0.035 \pm 0.016$	$0.341 \pm 0.134 \pm 0.015$
3	$0.001 \pm 0.047 \pm 0.019$	$0.893 \pm 0.112 \pm 0.020$
4	$-0.602 \pm 0.053 \pm 0.017$	$0.723 \pm 0.143 \pm 0.022$
5	$-0.965 \pm 0.019 \pm 0.013$	$0.020 \pm 0.081 \pm 0.009$
6	$-0.554 \pm 0.062 \pm 0.024$	$-0.589 \pm 0.147 \pm 0.031$
7	$0.046 \pm 0.057 \pm 0.023$	$-0.686 \pm 0.143 \pm 0.028$
8	$0.403 \pm 0.036 \pm 0.017$	$-0.474 \pm 0.091 \pm 0.027$

Statistically dominated

Systematic uncertainties - eye to the future

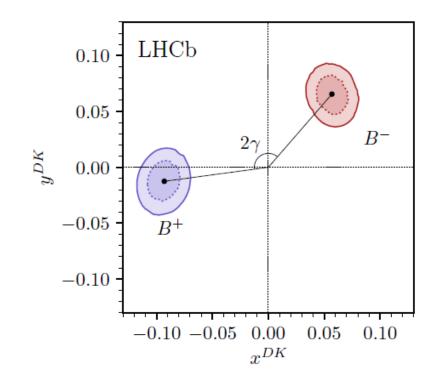

PRD **101** (2020) 112002 ST (DT) = single (double) tag

Uncertainty	<i>C</i> ₅
K_i and K'_i	0.005
ST yields	0.004
MC statistics	0.001
DT peaking-background subtraction	0.005
DT yields	0.001
Momentum resolution	0.010
$D^0 \overline{D}^0$ mixing	0.000
Total systematic	0.013
Statistical plus $K_L^0 \pi^+ \pi^-$ model	0.019
$K_L^0 \pi^+ \pi^-$ model alone	0.007
Total	0.023


- 1. Ignoring asymmetric bin-to-bin migration
 - can be mitigated by unfolding in the future
- 2. To leverage $D \rightarrow K_L \pi \pi$ we have to make assumptions related to the model and the size CF to DCS interference induced difference between $D \rightarrow K_L \pi \pi$ and $D \rightarrow K_S \pi \pi$
 - implemented a constraint hence appears in statistical uncertainty
 - potentially learn more from studying the $D \rightarrow K_L \pi \pi$ amplitude model
 - more weight to $D \rightarrow K_S \pi \pi$
- 3. Better understanding with more data

LHCb data

- Displaced vertex reduces background to very low level
 - Its modelling is the dominant experimental systematic though


Getting to γ

$$\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$$

Statistics dominated only 1 degree error from strong phases

JHEP 02 (2021) 169

- Also uses $D^0 \to K^0_S K^+ K^-$
- 12% more data in the γ measurement
- Strong phases:

-

arXiv:2007.07959 [hep-ex]

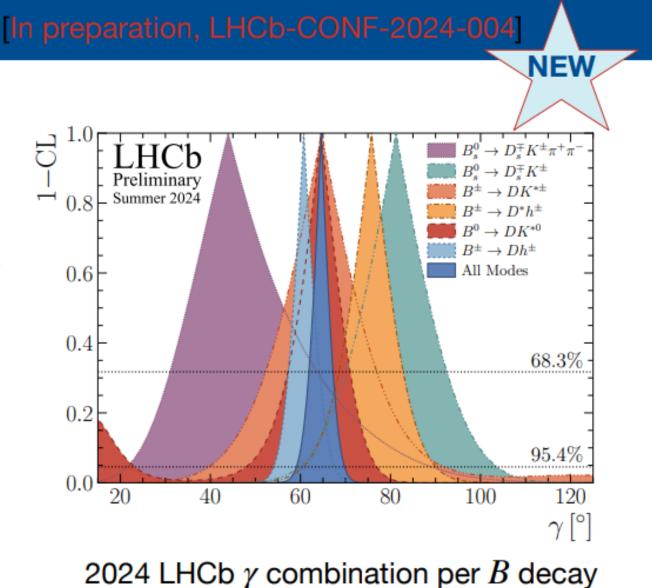
Precision flavour physics - Jim Libby

14

0.20.0measurements

• B^0 now sits amongst the B^+

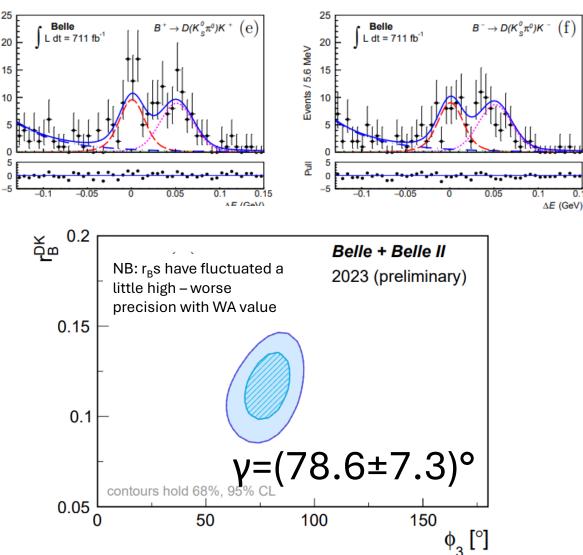
Aidan Wiederhold


decays

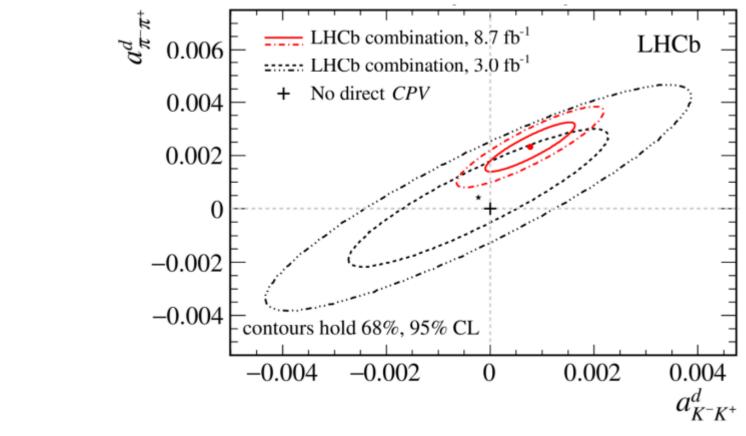
since 2022 Reduced tension between the $B_{\rm c}^0$

 $\gamma = (64.6 \pm 2.8)^{\circ}$

Decreased uncertainty by $\sim 0.7^{\circ}$


2024 LHCb γ

University of Manchester


γ/φ_3 : power of Belle + Belle II

- To be compared to LHCb lead the way: γ=(64.6±2.8)°
- Several Belle (711 fb⁻¹) + Belle II measurements (varying sample size) – total O(1 ab⁻¹)
 - D→ K⁰_Shh <u>JHEP 02 (2022) 063</u>
 - $D \rightarrow K_{S}^{0} K \pi JHEP 09 (2023) 146$
 - $D \rightarrow K^0_{S} \pi^0$, KK <u>accepted JHEP</u>
 - + Belle-only $D \rightarrow K\pi$ and others
- A few ab ⁻¹ will give a good cross check of this important SM parameter

Events / 5.6 MeV

Pull

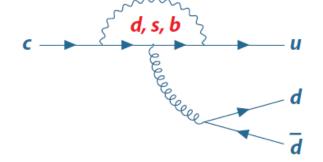
Case study 3: CP violation in charm

Better than parts per mille

Why is it small?

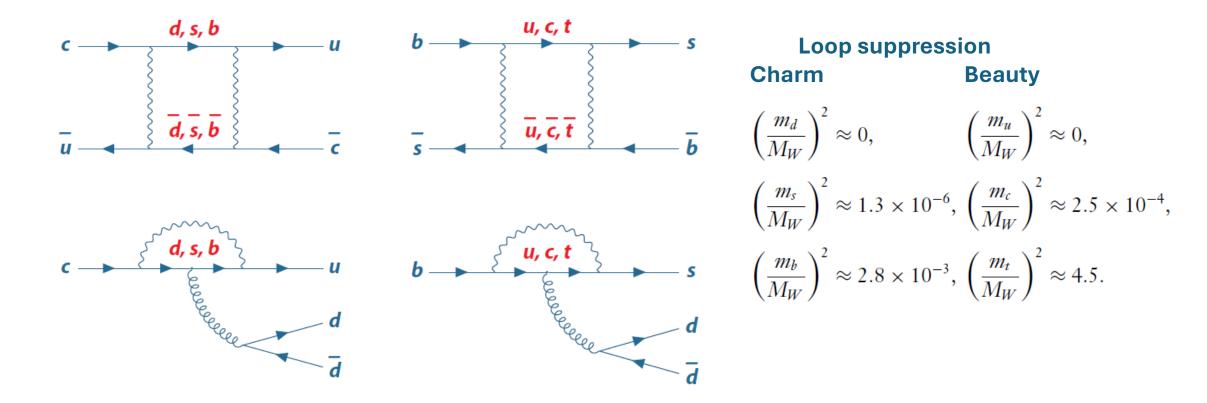
$$\begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 \begin{bmatrix} 1 - (\rho - i\eta) \end{bmatrix} & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- In Wolfenstein parameterization we see the 2^nd row/column is real to order λ^4


 $V_{cd} = -0.2245 - 2.6 \times 10^{-5}i, \quad V_{cs} = 0.97359 - 5.9 \times 10^{-6}i, \quad V_{cb} = 0.0416.$

 For physical manifestation we can look at combinations that can arise in singly-Cabibbo suppressed decay and mixing

 $\lambda_d = -0.21874 - 2.51 \times 10^{-5} i, \qquad \lambda_q = V_{cq} V_{uq}^*$


 $\lambda_s = +0.21890 - 0.13 \times 10^{-5} i, \qquad \lambda_b = -1.5 \times 10^{-4} + 2.64 \times 10^{-5} i.$

• GIM suppression almost complete with first two generations only real and imaginary terms similar in third – **most promising place for CPV in charm**

Ann. Rev. Nucl. Part. Sci. 71 (2021) 59

Further suppression

The good news is that large CP is a "clear" signature of new physics in the loops – naïvely expect O(10⁻⁴)

Charm at LHCb I

- Not originally part of the programme but large samples of
 - D^{*+}→D⁰π⁺ through high-pT hardware trigger then detached vertex + two-body D decay software trigger and
 - $B \rightarrow D^0 \mu^- \nu X$ where the high-pT muon hardware trigger and then the $D^0 \mu^-$ vertex

were reconstructed – accompanying particle allows "raw" asymmetries to be determined

$$\begin{split} A_{\rm raw}^{\pi-{\rm tagged}}(f) &\equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \bar{D}^0(f)\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \bar{D}^0(f)\pi^-)}, \\ A_{\rm raw}^{\mu-{\rm tagged}}(f) &\equiv \frac{N(\bar{B} \to D^0(f)\mu^-\bar{\nu}_{\mu}X) - N(B \to \bar{D}^0(f)\mu^+\nu_{\mu}X)}{N(\bar{B} \to D^0(f)\mu^-\bar{\nu}_{\mu}X) + N(B \to \bar{D}^0(f)\mu^+\nu_{\mu}X)}, \end{split}$$

Charm at LHCb II

- They reconstruct in the SCS decays
 - $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$
- But what is this "raw"

$$\begin{split} &A_{\rm raw}^{\pi-{\rm tagged}}(f)\approx A_{CP}(f)+A_{\rm D}(\pi)+A_{\rm P}(D^*)\\ &A_{\rm raw}^{\mu-{\rm tagged}}(f)\approx A_{CP}(f)+A_{\rm D}(\mu)+A_{\rm P}(B), \end{split}$$

- Experimental: charged-particle detection asymmetry
 - e.g., $eff(\mu+) \neq eff(\mu-)$
- Production: it is a pp collider (not a CP symmetric),
 - e.g., $N(D^{*+}) \neq N(D^{*-})$

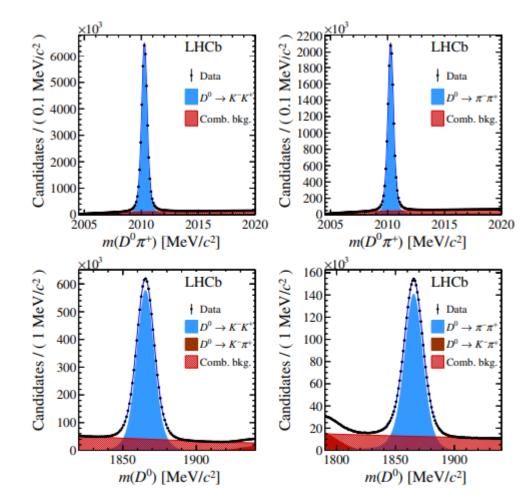
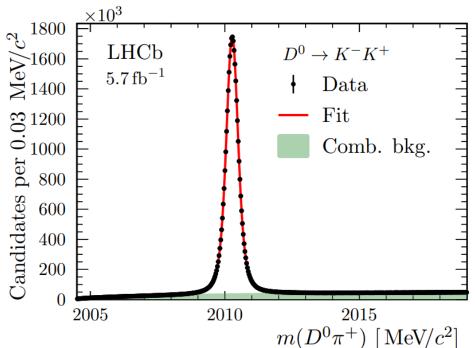


FIG. 1. Mass distributions of selected (top) π^{\pm} -tagged and (bottom) μ^{\pm} -tagged candidates for (left) K^-K^+ and (right) $\pi^-\pi^+$ final states of the D^0 -meson decays, with fit projections overlaid.

Observation of CP violation in charm

- Take difference of A_{CP} raw in $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ so that production and detection asymmetries cancel out
 - If non-zero one or both asymmetries for the individual modes are too

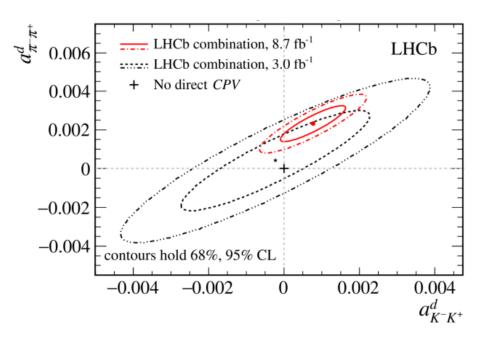

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2(\text{stat}) \pm 0.9(\text{syst})] \times 10^{-4},$$

$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8(\text{stat}) \pm 5(\text{syst})] \times 10^{-4}.$$

$$\Delta a_{CP}^{\rm dir} = (-15.7 \pm 2.9) \times 10^{-4},$$

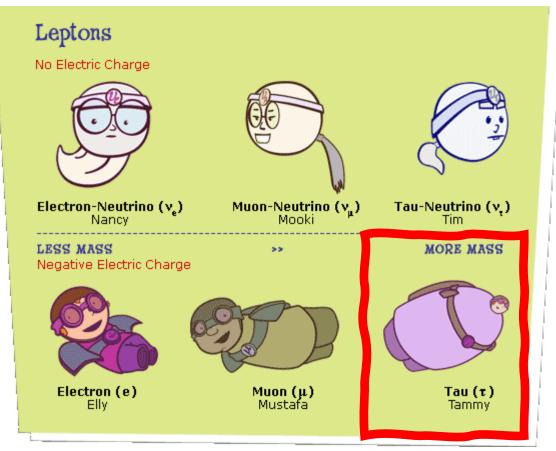
• Includes +0.3 correction due to any indirect CP violation

Measuring the absolute asymmetry


- Followed up with a measurement of the asymmetry in $D^0 \rightarrow K^+K^-$
 - Used five Cabbibo-favoured control modes to cancel production and detection asymmetries from all the measurements in two different ways
 - $D^0 \rightarrow \pi^+ K^-$, $D^+ \rightarrow \pi^+ \pi^+ K^-$, $D^+ \rightarrow \pi^+ K^0$, $D_s^+ \rightarrow \pi^+ K^+ K^$ and $D_s^+ \rightarrow K^+ K^0$
 - Also reweighted the kinematics to match the signal modes

$$\mathcal{A}^{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4}$$

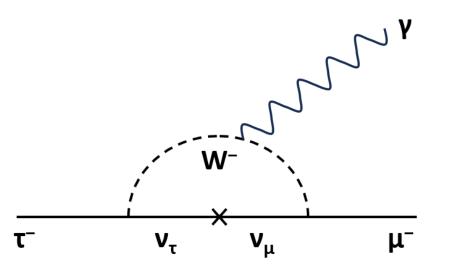
Measuring the absolute asymmetry


- Followed up with a measurement of the asymmetry in $D^0 \rightarrow K^+K^-$
 - Used five Cabbibo-favoured control modes to cancel production and detection asymmetries from all the measurements in two different ways
 - $D^0 \rightarrow \pi^+ K^-$, $D^+ \rightarrow \pi^+ \pi^+ K^-$, $D^+ \rightarrow \pi^+ K^0$, $D_s^+ \rightarrow \pi^+ K^+ K^$ and $D_s^+ \rightarrow K^+ K^0$
 - Also reweighted the kinematics to match the signal modes

$$\mathcal{A}^{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4}$$

What next?

- We have seen CP violation in $D^0 \rightarrow \pi^+\pi^-$ but is it SM or not?
- The observed size 10⁻³ is larger than the naïve expectation from the size of the λ_q parameters and the relative size of the penguin to tree diagram
 - However, breaking of SU(3) flavour assumptions can enhance penguin + possible long-distance rescattering (non-perturbative) effects can play a role
 - We know SU(3) flavour broken in D \rightarrow PP decays, e.g., $\Gamma(D\rightarrow K^+K^-)\approx 3 \Gamma(D\rightarrow \pi^+\pi^-)$
- So more measurements required to disentangle what is going on
 - e.g. $D \rightarrow \pi^0 \pi^0$ or $D \rightarrow \pi^0 \pi^+$
 - An opportunity for Belle II? Unfortunately, our sample size is much smaller so it will take time or innovation at LHCb


Case study 4: tau lepton at Belle II

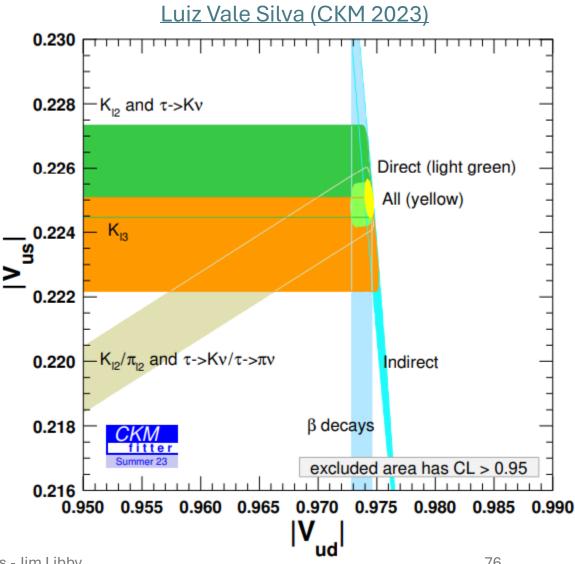
Flavour beyond quarks

https://www.guarked.org/

Tau physics motivation I

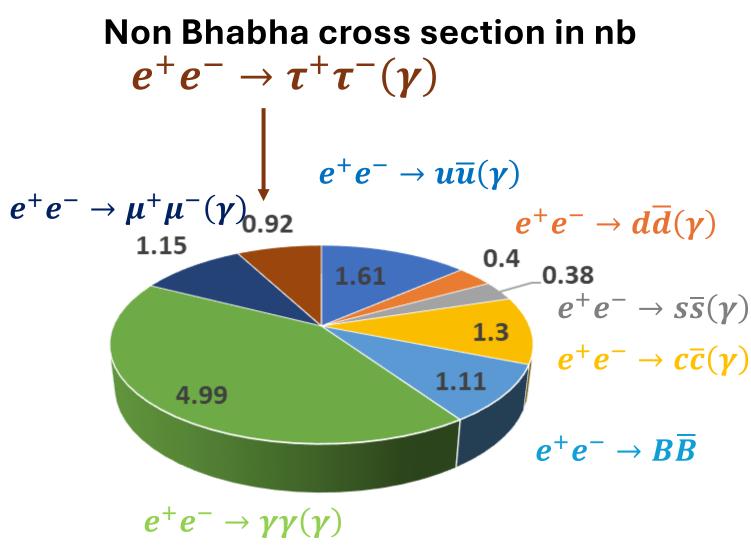
- Because neutrinos are massless there is no need for a CKM like matrix in the charged current interactions
 - Therefore, lepton flavour violation a clear signature of BSM physics
- tau has 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SM-sensitivity anticipated
 - Any observation of lepton-flavour violation in $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow I\phi$ etc **new physics**
 - SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay

w

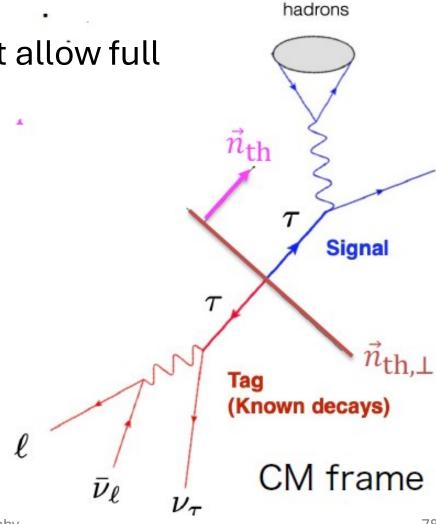

 v_{τ}

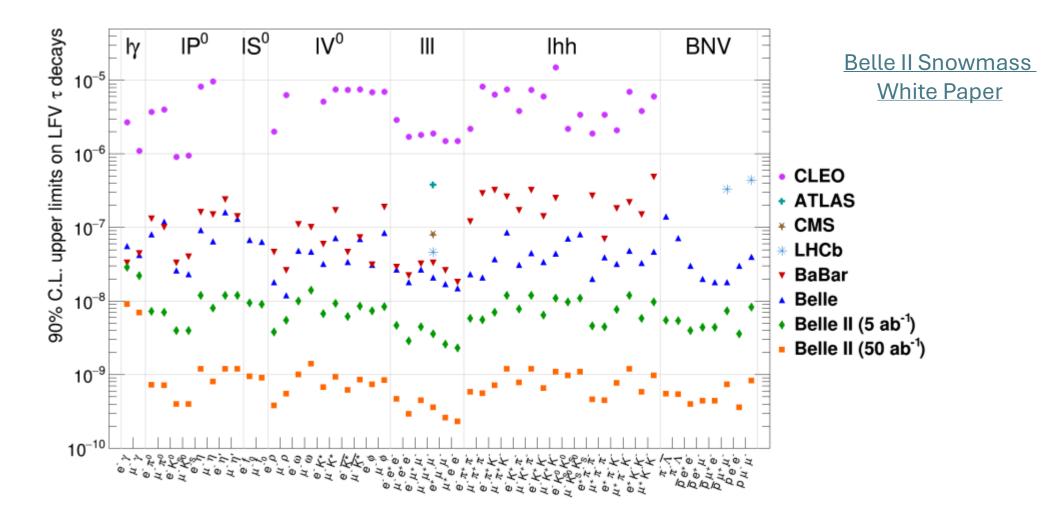
e⁻,μ⁻,d,s

 $\bar{\nu}_{e}, \bar{\nu}_{\mu}, \bar{u}, \bar{u}$


Tau physics motivation II

- Precision measurements of the τ lepton can have significant impact
- Example:
 - first row unitarity of CKM matrix 'Cabibbo angle anomaly'
 - $B(\tau \rightarrow Kv)/B(\tau \rightarrow \pi v)$ proportional to $|\dot{V}_{us}/V_{ud}|^2$
 - Combine with lattice QCD information to provide additional constraint
- Additionally, lepton-flavour universality and dipole moments
- Mass and lifetime important inputs to these calculations


Why *τ* physics at the Y(4S)?


- The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$
- Similar cross section for $e^+e^- \rightarrow \tau^+\tau^-$
- 920 million tau pairs per ab⁻¹ of integrated luminosity
- A tau factory too

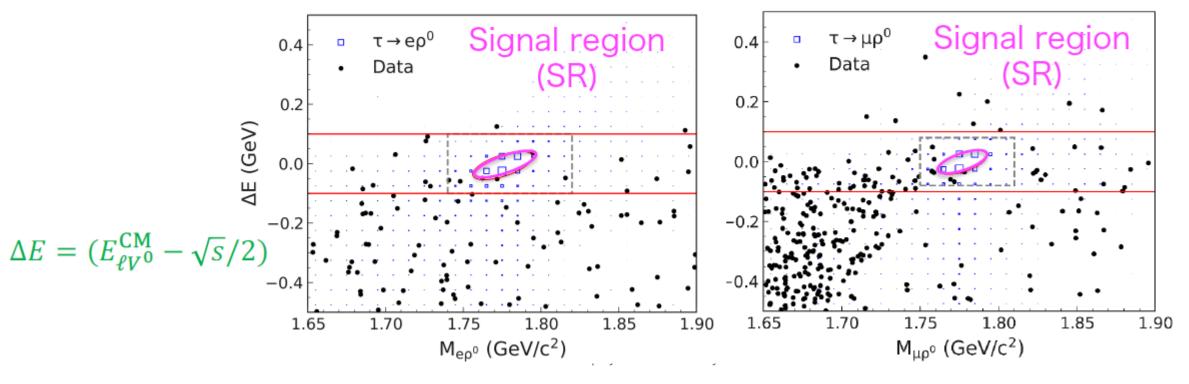
How to reconstruct a τ lepton at Belle (II)

- Missing energy from neutrinos does not allow full reconstruction
 - Identify using the thrust axis $\vec{n}_{\rm th}$
 - maximizes the momentum projection
 - Divide event into two hemispheres
- Signal side
 - e.g. $\tau \rightarrow v$ + hadrons
- Tag side: a standard model decay
 - single prong: $\tau \rightarrow lvv$ or $\tau \rightarrow \pi v + n\pi^0$
 - three prong decay: $\tau \rightarrow 3\pi v + n\pi^0$

Lepton-flavour violating searches

LFV: $\tau \rightarrow IV^0$ (V⁰= ρ , ω , φ , K *)

• Forbidden in SM but enhanced many leptoquark models, c.f., R(D(*))


- V⁰=ρ, ω, φ, Κ
- Full data set of 980 fb⁻¹
- 3 and 1 prong tag: $3\pi v$, lvv, πv +up to $2\pi^0$
- Background suppression with BDT
- JHEP **06** (2023) 118

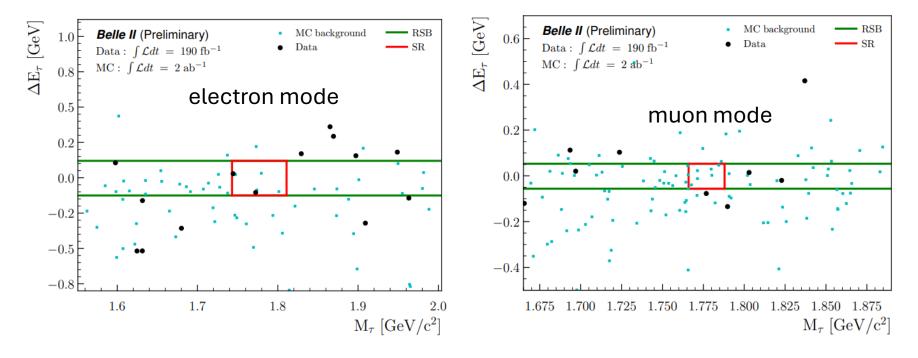
- V⁰= φ
- Data set of 190 fb⁻¹
- Inclusive tag
- Background suppression with BDT
- arXiv:2305.04759

High efficiency key for best sensitivity: multivariate selection and inclusive tagging

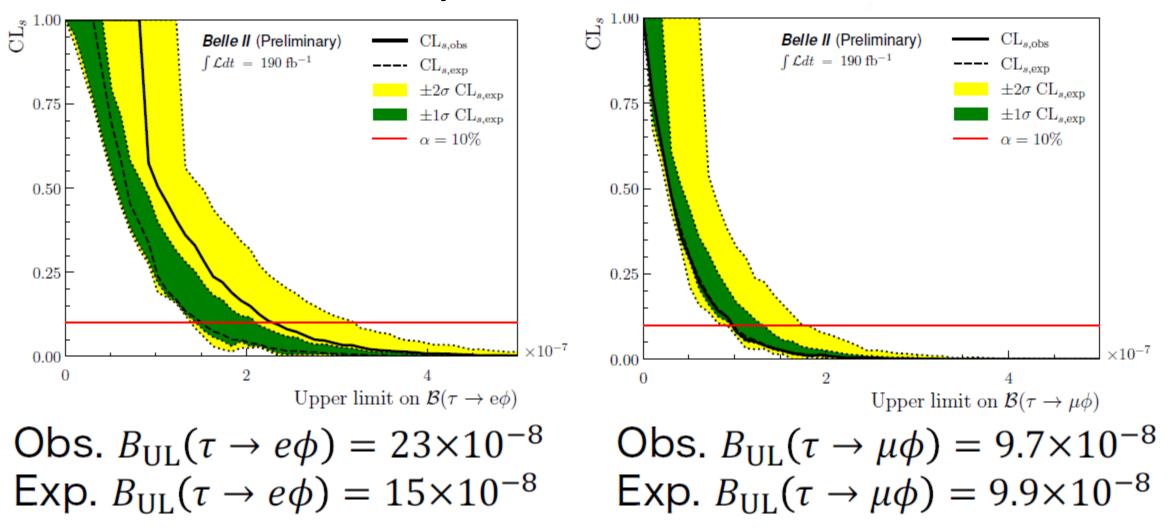
LFV: Belle $\tau \rightarrow IV^0$ ($V^0 = \rho, \omega, \phi, K^*$) approach

- Tagged with 1-prong or 3-prong decay
- Background from $\tau \rightarrow 3\pi v$ and $ee \rightarrow qq$ suppressed with a boosted decision tree (BDT)
- Prepared separate BDT classifier for each IV⁰ mode

LFV: Belle $\tau \rightarrow IV^0$ ($V^0 = \rho, \omega, \phi, K^*$) results

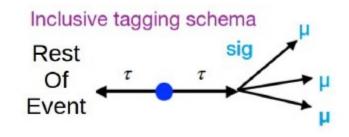

No significant excess in all ℓV^0 modes

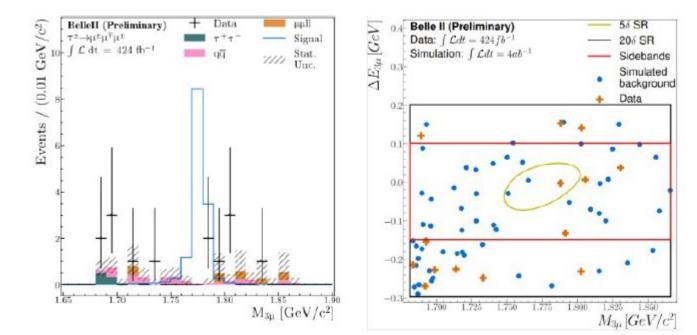
World leading results

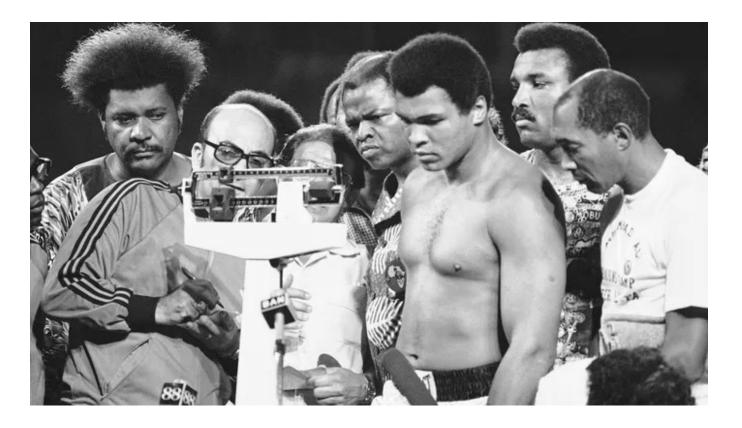

_	Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$	
_	$\tau^{\pm} \to \mu^{\pm} \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7	
	$\tau^{\pm} \to e^{\pm} \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2	
	$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3 *	Counting method 90%
	$\tau^\pm \to e^\pm \phi$	6.45	0.38 ± 0.21 (stat.) ± 0.00 (syst.)	4.5	0	< 2.0 *	confidence levels
	$\tau^{\pm} \to \mu^{\pm} \omega$	3.27	0.32 ± 0.23 (stat.) ± 0.19 (syst.)	4.8	0	< 3.9 *	30% improvement
	$\tau^{\pm} \to e^{\pm} \omega$	5.41	0.74 ± 0.43 (stat.) ± 0.06 (syst.)	4.5	0	< 2.4 *	over previous
	$\tau^{\pm} \to \mu^{\pm} K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9 *	measurements
	$\tau^{\pm} \rightarrow e^{\pm} K^{*0}$	6.94	0.54 ± 0.21 (stat.) ± 0.16 (syst.)	4.1	0	< 1.9 *	
	$\tau^{\pm} \to \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3 *	
_	$\tau^{\pm} \to e^{\pm} \overline{K}^{*0}$	7.45	$0.25 \pm 0.11 (stat.) \pm 0.02 (syst.)$	4.1	0	< 1.7 *	

LFV: Belle II $\tau \rightarrow I\phi$ approach

- Untagged: train BDT inclusively to discriminate from background
 - event shape variables, signal kinematics, φ mass and rest-of-the-event, i.e., tracks and clusters not used to reconstruct signal
 - 6% efficiency twice Belle




Not competitive with the Belle results **LFV: Belle II \tau \rightarrow |\phi results** But first application of the inclusive tag



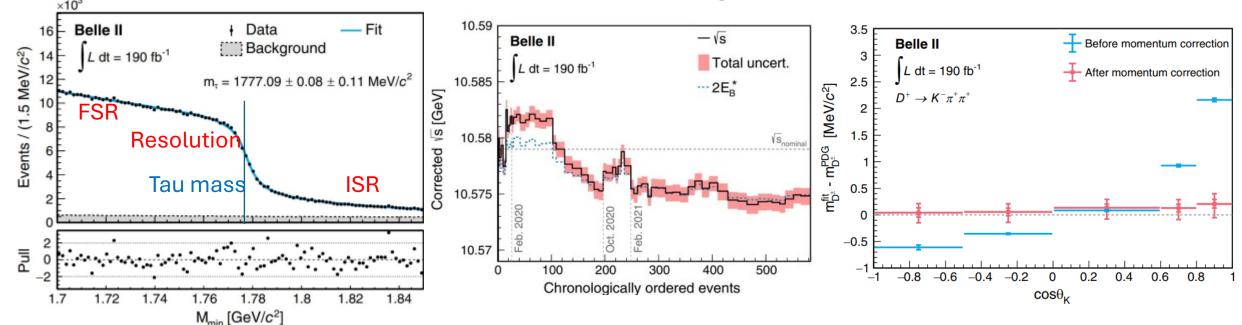
$\tau \rightarrow 3\mu$ – lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency – multivariate
- Cut 'n' count in 2D plane of
 - $M_{3\mu}$ and $\Delta E = E_{3\mu} E_{beam}$ (in c.m.)
 - Sideband derived background estimate $0.5^{+1.4}_{-0.5}$ events
- One event observed
- World best limit
 - BF < 1.9×10⁻⁸ (90% c.l.)
- Area of competition
 - <u>LHCb</u> BF < 4.1×10⁻⁸ (Run 1 only)
 - <u>CMS</u> BF < 2.9×10⁻⁸ (Run 1+2)

"Ali's weight was announced as 206 pounds. He had not been so low in years: 216 pounds came through as the correction. A miscalculation of the kilos. A whistle from the press. He was four to eight pounds heavier than he said he would be, a poor prospect for his ability to dance and run", *The Fight*, Norman Mailer

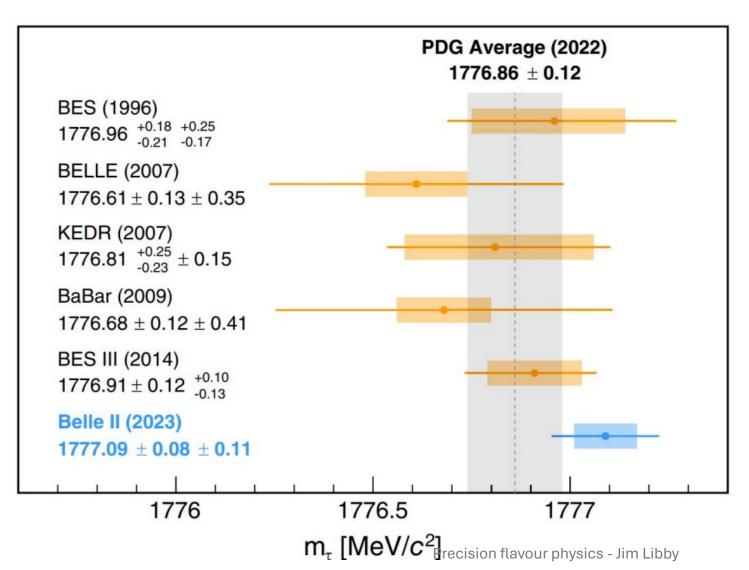
Heavyweight weigh-in: τ mass measurement:

τ mass measurement

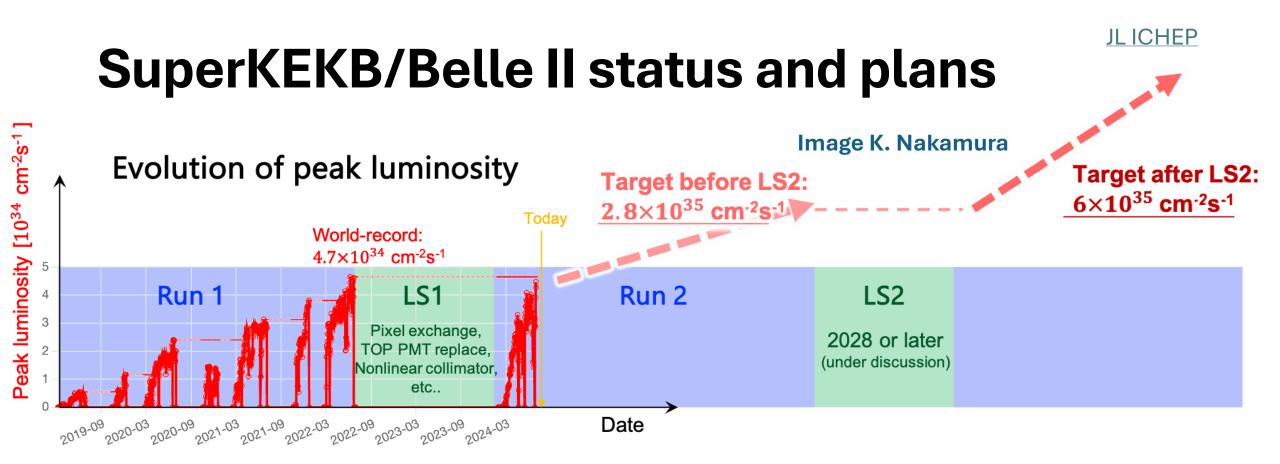

- Fundamental parameter of the standard model
 - Important input to lepton-flavour-universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1+\delta_W)(1+\delta_\gamma)} \quad \text{(Ss are radiative corrections)}$$

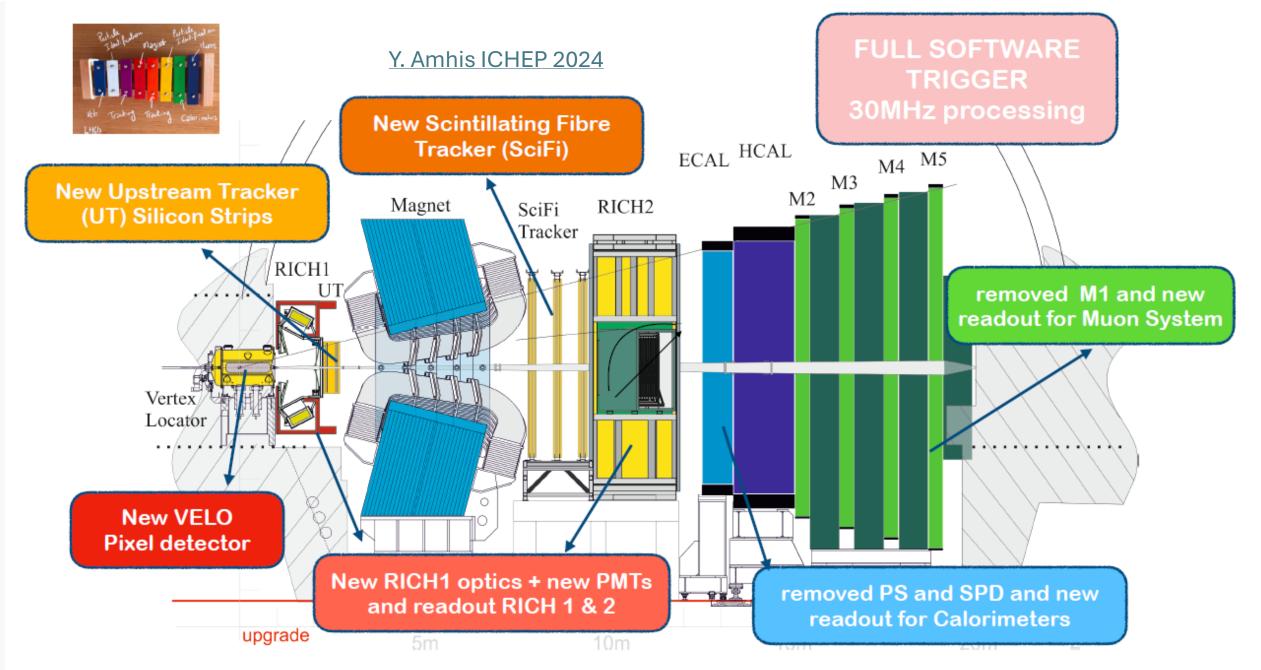
We use the pseudomass variable to determine mass


$$\begin{pmatrix} \tau_{\text{tag}} & \tau_{\text{sig}} & \pi \\ \nu_{\ell} & \nu_{\tau} & \nu_{\tau} \end{pmatrix} M_{\text{min}} = \sqrt{m_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi})(E_{3\pi} - |\vec{p}_{3\pi}|)} \le m_{\tau}$$

T mass measurement $M_{\min} = \sqrt{m_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi})(E_{3\pi} - |\vec{p}_{3\pi}|)} \le m_{\tau}$

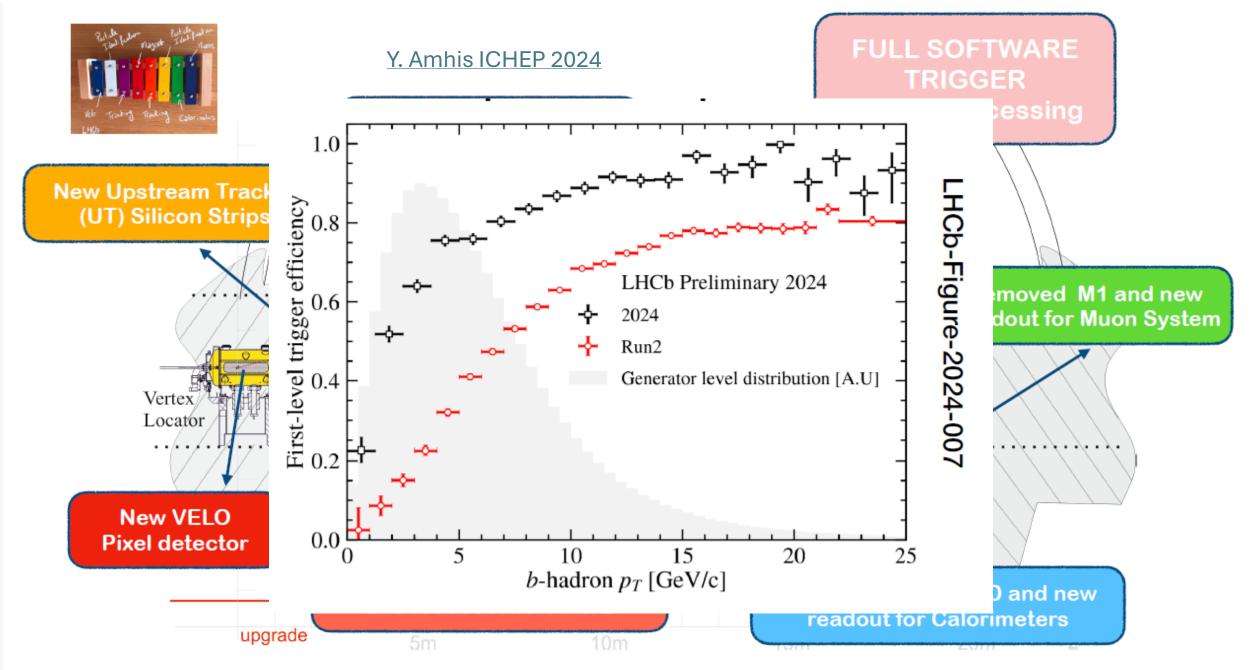

- Fit to distribution with analytic form that accounts for ISR/FSR and resolution
- Knowing the scale key:
 - beam energy (from E_B^*) and
 - momentum (from D mass)

τ mass measurement



World's most precise measurement to date - dominant systematics from beam energy and momentum scale

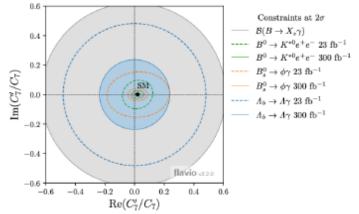
Outlook



- Run 2 is long end 2028 or later
 - Steady accumulation at $\sim 2 \times 10^{35}$ cm⁻²s⁻¹ for several ab ⁻¹ 2nd generation
 - After Run 2 upgrade proposal for reach design luminosity and tens of ab⁻¹
 - Talks by K. Nakamura and M. Roney (polarized beams) Framework CDR arXiv:2406.19421

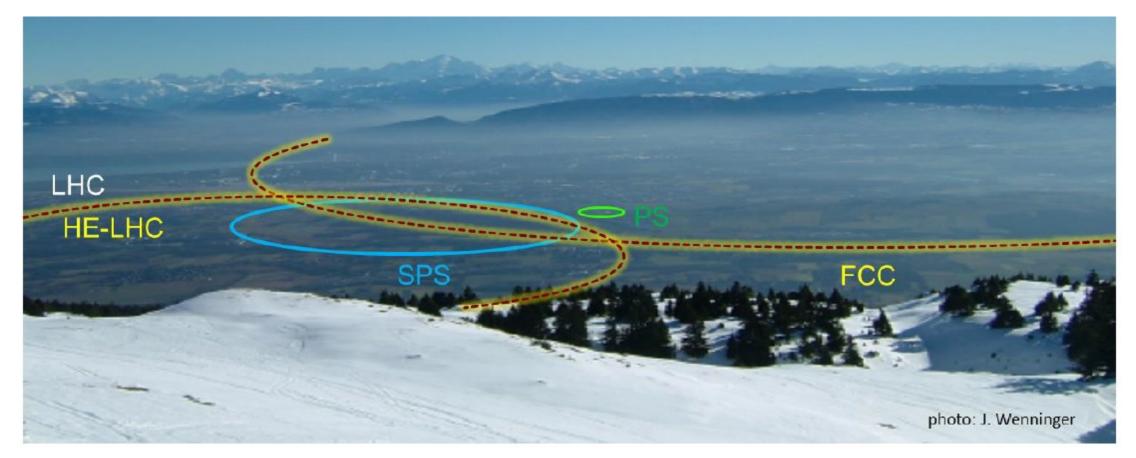
Major upgrade of all sub-detectors and readout

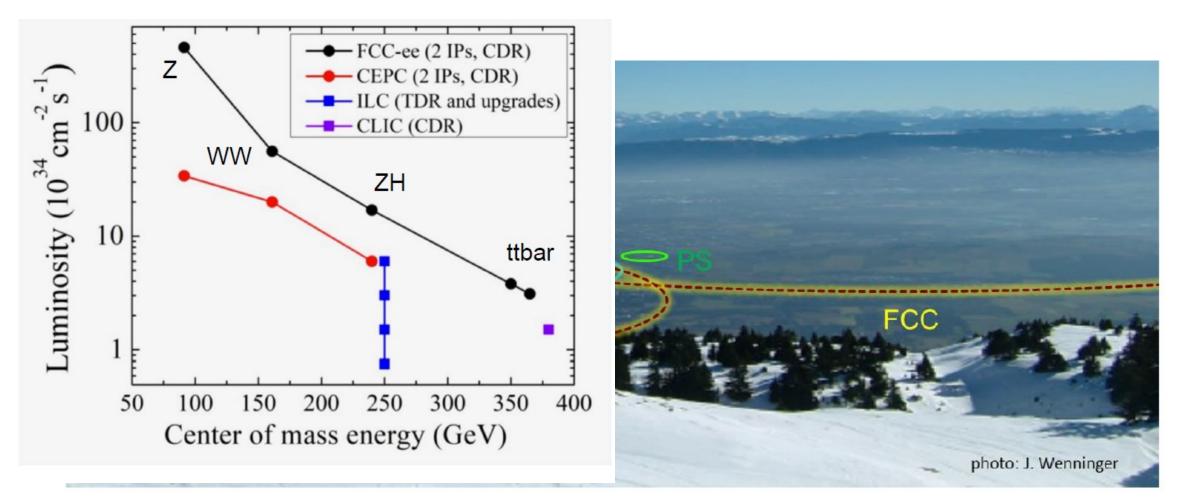
The LHCb Upgrade I arXiv:2305.10515


Major upgrade of all sub-detectors and readout

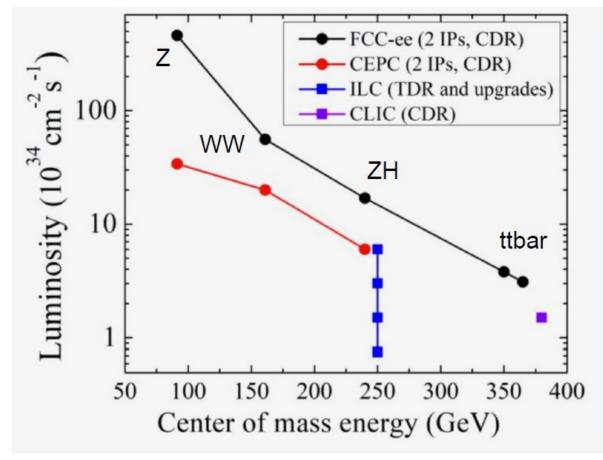
Upgrade II so there's a clear case for an ambitious plan of upgrades Run 1 Run 2 Run 3 Run 4 Run 6 Run 5 covering the full HL-LHC phase 16 Peak luminosity [10³³ cm⁻²s⁻¹] LS2 LS3 LS1 LS4 1000 Current LHCb actual 23fb⁻¹ 300fb $= B_s^0 \rightarrow D_s^- D_s^+$ B⁰₁ all ccs . 10 expected B⁰,→j/(µ¢ B⁰₂→ψ(25)φ Recorded lumin No CPV B⁰→¢¢ 8⁰→//ωπ⁺π 8 σ(φ_s) [mrad] $\blacktriangle B_{2}^{0} \rightarrow K^{*g}\overline{K}^{*q}$ $B^0_{-} \rightarrow l/aK^+K^-$ high mass 100 6 SM prediction 100 10 F 50 Solid (dashed) contours contain 68.3% (95.4%) 23 300 50 0.96 0.98 1.001.021.04 Integrated Luminosity [fb⁻¹] |q/p|0 2015 2025 2030 2010 2020 2035 2040 Year He made 1 []____ de II ⁻¹)

Y. Amhis ICHEP 2024

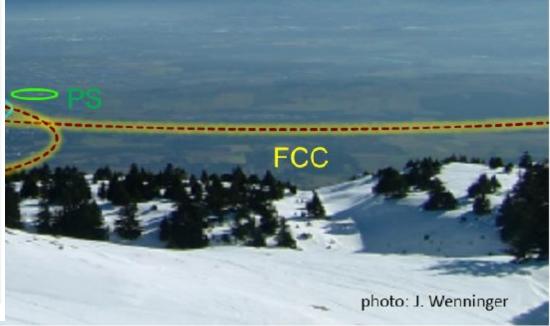

			Upgr	Upgrade I	
	1p	,	, ⁻¹)	(50fb^{-1})	$(300 fb^{-1})$
CKM tests					
$\gamma (B \rightarrow DK, etc.)$	4°	[9, 10]	1.5°	1°	0.35°
$\phi_s (B_s^0 \rightarrow J/\psi \phi)$	$32 \mathrm{mra}$	d [8]	14 mrad	10 mrad	4 mrad
$ V_{ub} / V_{cb} $ $(\Lambda_b^0 \rightarrow p\mu^-\nu_{\mu\nu} \ etc.)$	6%	[29, 30]	3%	2%	1%
$a_{sl}^d (B^0 \rightarrow D^- \mu^+ \nu_{\mu})$	36×10	-4 [34]	8×10^{-4}	5×10^{-4}	2×10^{-4}
a_{sl}^{s} $(B_s^{\pm} \rightarrow D_s^- \mu^+ \nu_{\mu})$	33×10	-4 [35]	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm		-			
ΔA_{CP} $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	29×10	-5 [5]	13×10^{-5}	8×10^{-5}	3.3×10^{-5}
A_{Γ} $(D^0 \rightarrow K^+K^-, \pi^+\pi^-)$	11×10	-5 [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x (D^0 \rightarrow K^0_* \pi^+ \pi^-)$	18×10	-5[37]	6.3×10^{-5}	4.1×10^{-5}	1.6×10^{-5}
Rare Decays					
$\overline{B(B^0 \rightarrow \mu^+ \mu^-)}/B(B^0_{\wedge} \rightarrow \mu^+ \mu^-)$	 69% 	[40, 41]	41%	27%	11%
$S_{\mu\mu} (B_s^0 \rightarrow \mu^+ \mu^-)$	_				0.2
$A_{\pi}^{(2)}(B^0 \rightarrow K^{*0}e^+e^-)$	0.10	[52]	0.060	0.043	0.016
$A_T^{fm}(B^0 \rightarrow K^{*0}e^+e^-)$	0.10	[52]	0.060	0.043	0.016
$A_{\phi\gamma}^{\Delta\Gamma}(B_s^0 \rightarrow \phi\gamma)$	+0.41 -0.44	[51]	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_* \rightarrow \phi\gamma)$	0.32	(51)	0.093	0.062	0.025
$\alpha_{\gamma}(A_{k}^{0} \rightarrow A\gamma)$	+0.17 -0.29	[53]	0.148	0.097	0.038
Lepton Universality Tests	-0.25				
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007
R_{K^*} $(B^0 \rightarrow K^{*0}\ell^+\ell^-)$	0.12	[61]	0.034	0.022	0.009
$R(D^*)$ $(B^0 \rightarrow D^{*-}\ell^+\nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002


Physics programme limited by detector,

LHCB-TDR-023


Far future: FCC-ee

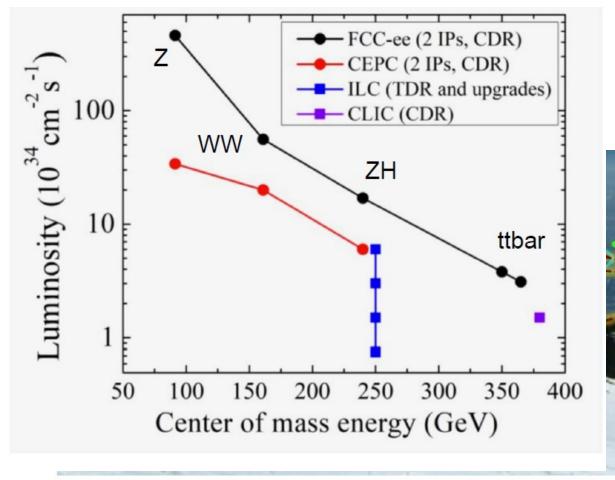
Far future: FCC-ee



Far future: FCC-ee

	Y(4S)	рр
All hadron species		\checkmark
High boost		\checkmark
Enormous production x-sec		\checkmark
Negligible trigger losses	\checkmark	
Low background environment	\checkmark	
Initial energy constraint	\checkmark	

V(4S)



Ζ

(✓)

Eur. Phys. J. Plus 136 (2021) 837

Far future: FCC-ee

	Y(4S)	рр	Ζ
All hadron species		\checkmark	\checkmark
High boost		\checkmark	\checkmark
Enormous production x-sec		\checkmark	
Negligible trigger losses	\checkmark		\checkmark
Low background environment	\checkmark		\checkmark
Initial energy constraint	\checkmark		(✓)
	FCC-e elle II @ 50 $\rightarrow K^+ \tau^+ \tau^-$	/ab	98

Precision flavour pr., _...,

Conclusion

- Flavour measurements at LHCb and Belle II are very much in the precision era
 - CKM physics
 - Searches for rare decays
 - Charm and tau physics
- Both experiments plan for another decade or more so precision will be ever more important
 - Also LHC general purpose experiments more and more interested in flavour for the HL-HLC era see <u>M. Pierini at ICHEP</u>
 - Already lead the way for some states with muons
- For you (if not for me) a Higgs factory Tera-Z programme would have a substantial flavour component