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@ Previously:
e Z as a standard candle
e Some background on object reconstruction and identification
e Some background on detector simulation and Monte Carlo
e Tag and probe for efficiency measurements
o Precision electroweak measurements with W and Z: sin® Ow

o Today:
o Precision electroweak measurements with W and Z: my,
@ Precision measurements of W and Z cross sections and
constraints on PDFs
Jet reconstruction and Jet energy corrections
Measurements with jets
Multiboson Production
Top physics
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W mass at LHC

@ W cannot be fully reconstructed due to neutrino — mass must be
inferred from lepton pr or transverse mass distributions

@ Current ATLAS measurement of my performed using 1D p% and My
distributions (in bins of 77*), but note p% has ~90% weight in combination

@ Highest possible precision required on lepton momentum and hadronic
recoil scale/resolution

° ph (and p%) distributions depend not only on mw but also critically on

p% as well as polarization — strong dependence on QCD calculation and
PDFs

@ My distribution still sensitive to p¥ and polarization due to finite

detector acceptance
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W mass: PDF Uncertainties

Eur. Phys. J. C 78 (2018) 110
mw = 80370 & 7(stat.)£11(exp. syst)£14(mod. syst.) MeV

mwy = 80370 & 7(stat.)£11(exp.)+8.3(QCD) +5.5(EWK)+9.2(PDF) MeV

‘ PDF Uncertainty (MeV)

per |n|-charge cat. 20-34
per-charge 14-15
full combination 9.2

@ PDFs determine the W rapidity

N 80700

spectrum and lepton decay angles S gogsof ATLAS Trr Sromiine
. . = EVs=7TeV, 411" Amg(W) [Stat. Unc.
through W polarization gBOGOO;E e . Ymow) —Tomiune
80550;W:ﬂ Hv 3 3 — Comb Fit [JTotal Unc.
@ Well-defined correlations between 80500 ; ;
phase space regions and processes 80450E * i : + i :
which are already partly exploited 80400 +ﬁ+ﬁ‘*ﬁ+ : + + : i
. 80350 | | i
in present measurement to reduce 80300;} : : :
uncertainty 8025(); !
. . 80200F : : :
@ Can be further exploited in the 0.0<INj<0.8 0.8<Ij<14 L4<inj<2.0 2.0<]nj<2.4
future Category
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W mass: QCD Modelling Uncertainties

Eur. Phys. J. C 78 (2018) 110
mw = 80370 & 7(stat.)£11(exp. syst)£14(mod. syst.) MeV
mw = 80370 =+ 7(stat.) 411 (exp.)+8.3(QCD) +5.5(EWK)49.2(PDF) MeV

arXiv:1805.05916
040 e
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& Tel Z(= 218y =X
4,66 < My < 116 Gev/

@ W pr spectrum in relevant region
driven by large logarithms in QCD
calculation

@ Relatively large theoretical
uncertainties, and ambiguities in
correlations across phase space
and processes

@ Current measurement using Z pr

~ 1041
. > E ATLAS Simulation
spectrum to constrain W, & L0 (o7 Tev, pp- WX, pp- 20X

assuming strong correlations

between Z and W production

across pr, but decorrelating

3 ) X 0975 “H -~ LOPDFW'  —Total W'
contribution of different quark E ™ LOPDEW  —Toulw

o R R R R R R e
flavours P! [Gev]

Josh Bendavid (MIT) EW/QCD Experiment 5



W mass: QCD Modelling Uncertainties

Eur. Phys. J. C 78 (2018) 110
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@ Measured hadronic recoil (missing energy) distribution has some
sensitivity to W pr distribution, appears to disfavour more advanced
calculations of W/Z pr ratio

@ Future directions for W pr spectrum:

o Better direct measurement (special low pileup runs)

In-situ constraints

Reducing theoretical uncertainties (higher logarithmic accuracy)

Better understanding of heavy-flavour contributions

More systematic correlations of theory uncertainties across phase

space and between W and Z
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Updated ATLAS Measurement

arXiv:2403.15085 @ Updated ATLAS measurement
using the same 7 TeV dataset
a2 o aasomon -
Bow. e @ Main feature: Use of
ATLAS 2024 otel Uno. . . .
TRber 1o Bsu prodicton o profile-likelhood fit for reduced
80200 80300 80400 MoV] uncertainties via in-situ
m e . .
v constraints (especially on PDFs)
T T
ATLAS crhe ° i i
7 TeV. 4641 1" cTe Also an opportunity to .dlrectly
: update measurement with newer
S = PDF sets and further explore the
= ATLASpdf21 — compatibility between them
-=-MSHT20 I
—+CT18 2 ) H Lo :
o Opor X @ Interesting study: inflating PDF
-=- NNPDF3.1 “ il H H H
o NNPDF4.0 e prefit” uncertainties increases
O x3 . . . .
PDF the effective weight of the in-situ
1 1
] , . .
0 %0 % am,, MeV] constraint and brings the results

closer together
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Updated ATLAS Measurement: W Width

@ The width of the W is also an interesting quantity to
measure: predicted by the SM given the W mass and other
EW parameters

@ In this case the transverse mass is much more sensitive than

the lepton pt
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arXiv:2403.15085
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Updated ATLAS Measurement: W Width

e Width can be extracted simultaneously with mass (albeit with

somewhat increased uncertainty)

@ Correlations then become relevant

Overview of T, measurements
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arXiv:2403.15085
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Muon Momentum Scale (and Resolution)

@ Z — pp can also be used as a standard candle for the muon momentum

scale and resolution, since the mass (and width) are known very precisely
from the LEP beam energy scan and calibration (mass is known to
2.3 x 107 relative precision)

J/1 and T can also be used (T mass is known to similar precision, and
J/1 mass to 2 x 107°)

To first order calibration is trivial: Match the Z peak (+ width)
between data and MC (in bins of 7 for example)

More complicated: Account for possible charge/pr dependence of any

momentum scale or resolution bias
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Muon Momentum Scale (and Resolution) pr dependence

For curvature k = 1/pt, the momentum scale bias can be
written as

dk/k ~= A+ qgM/k — ek

(e.g. CMS PAS SMP-14-007)

The three terms correspond to magnetic-field bias,
misalignment (e.g. from weak modes in the global alignment
procedure), and the average effect of material mis-modelling
on the energy loss assumed in the track reconstruction

Resolution can be written as:

02/k? ~= a+ c/k?

Where the two terms correspond to average contributions
from multiple scattering and hit resolution

For CMS W-like measurement, all 5 terms are explicitly
determined/corrected for using the J/1)
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Muon Momentum Scale (and Resolution) pr dependence
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@ In the ATLAS measurement, the alignment and b-field like biases are
explicitly corrected for (using the Z) together with the hit resolution
contribution to the resolution

@ Material-like bias is checked (again with Z) and upper bound is
propagated as a systematic uncertainty (also cross-checked with explicit
£10% variation of material model)
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Muon Momentum Scale (and Resolution) pr dependence

8 x 10°[1/GeV]

@ In the LHCb mw measurement,
alignment-like bias is first corrected in a
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CDF: Energy/Momentum Scale Calibration

Recent measurement with 8.8/fb of Tevatron data (1.96 TeV ppbar)
Both electron and muon channels with high precision energy/momentum
calibration
B x10°
—4— Jhy—ppu r ASg =12 +43,, ppm
1.2~ 1;?: :f r y2/dof = 39/33
[ & combined é r P.=21%
l ﬂ S 50~ Pys =69 %
L N 3
ad T‘% POV £
18 02 0.4 0 1 1.l2 1.4 1.6
< Gevlpi > E/p (W—sev)

Ultra-precise calibration of tracking

momentum scale from J/psi and Y validated

and combined with Z->mu mu

After corrections for residual misalignment
and material, momentum scale determined to

relative accuracy of 25ppm

Josh Bendavid (MIT)

Tracking momentum scale transported to

electron energy scale in calorimeter with E/p
Residual uncertainties from material model in

inner detector (~0.2 radiation lengths) and
calorimeter, non-linearity
Total uncertainty of ~80ppm

EW/QCD Experiment 14
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LHCb my, measureme
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@ LHCb measurement is complementary

because of forward rapidity coverage (2.2
i 7 i 4.4) — PDF uncertainties expected
to be anti-correlated with ATLAS and
CMS

@ Current measurement is statistically

limited, but only ~ 1/3 of the run 2

dataset is used

Measurement uncertainty summary

Source
Parton distribution functions
Theory (excl. PDFs) total
Transverse momentum model
Angular coefficients
QED FSR model
Additional electroweak corrections
Experimental total

Momentum scale and resolution modelling (7.5
Muon ID, trigger and tracking efficiency

Isolation cfficicncy
QCD background
Statistical
Total

Josh Bendavid (MIT)

Size [MeV |

(9.0 Average of NNPDF31, CT18, MSHT20 )
174

(12.0 Envelope from five different models )
9.0

C7.2 Envelope of Pythia, Photos and Herwig)

(€Y Test with POWHEGew )
10.6

Includes simple statistical contributions,

6? dependence on external inputs
2;; and details of the methods.
22.7
31.7
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Science 376 (2022) 6589, 170-176

e Z->|l data used
extensively for calibration
and validation

o Theory model
tuning

o Hadronic Recaoll
Calibration

o Lepton Efficiencies

Final Z mass measurements
consistent with world average:

Muons:
Mz = 91,192.0 + 6.4ta; & 4.055t MeV

Electrons:
My = 91,194.3 £ 13.8at + 76555 MeV
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Science 376 (2022) 6589, 170-176

x10° x10°
. . D -
C D F . ReS LI |tS s 2ldof = 82/ 62 p A x3ldof = 39/ 48
- Vi Pa=4% 40 r P.=79%
Source Uncertainty (MeV) % % , \ besen 3 . liﬂ e
Lepton energy scale 3.0 g \ ER I
Lepton energy resolution 12 £ h 2 20 L,
g Suy g W->ev
Recoil energy scale 12 [ W= . J o VH'H-: A
Recoil energy resolution 18 . - k\\
Lepton efficiency 04 % ® e % 70 8 T
Lepton removal 12 T my (GeV)
Backgrounds 3.3
p% model 18 .
Py [ model 13 - — e Most precise
Parton distributions 39 o0y s L Imea.su_ff(_eme{‘i )
QED radiation 57 * Insignificant tension
W boson statistics 6.4 | - Wr':ezii::;]dard Model
Total 94 - P
80100 80200 80300 80:‘00 BO::.OO
my, [MeV]

My = 80,433.5 £ 6.45; & 69555 = 80,433.5 & 9.4 MeV /c?

Josh Bendavid (MIT)
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myy summary

Overview of m,, measurements
""""""" ST 1 T
LEP Combination
Lep conpnaien,  [ATLAS A
(s=7TeV, 46" bl

m,, = 80376 + 33 MeV

DO (Run 2)
Phys. Rev. Lett. 108 (2012) 151804
m,, = B0375 £ 23 MeV

CDF (Run 2) ]
Science 376 (2022) 6589 ' 101
m,, = 80434 £ 9 MeV' ]

LHCb 2021
JHEP 01 (2022) 036 - ‘l -
m,, = 80354 £ 32 MeV s

ATLAS 2017 3
Eur. Phys. J. C 78 (2018) 110 . Measurement :
e
|:|Slat. Unc.
ATLAS 2024 .Total unc. ‘ '
1 sM Prediction e
80200 80300 80400

m,, [MeV]

@ CDEF result is in significant tension with both the SM prediction (7¢) and
the other measurements
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myy Combination Working group set up between ATLAS,
CMS, LHCb, D0, CDF for combination of LHC and Tevatron
myy measurements

Tension of CDF measurement with SM and other
measurements motivates more careful study

Measurements are correlated mainly due to theoretical
predictions and uncertainties

General strategy: First correct individual measurements so
they are on coherent theoretical grounds

e Common treatment of angular coefficients

e Common PDF (in fact multiple PDF sets are explored)

e Changes in (fiducial) pTW distributions from different
predictions or theoretical treatment are assumed ot be
reabsorbed by the tuning to Z data in each experiment

Then uncertainties are evaluated on top of this starting point
and correlations properly evaluated
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Angular Coefficient Comparison: CDF/DO vs  CERN-LPCC-2022-06
newer generators
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CDF and DO both used older (and not identical) versions of “Resbos 1" to predict W production and

decay kinematics

Older Resbhos versions predict quite different angular coefficients compared to modern generators
due to evolving understanding of interplay between helicity components and resummation
Difference in fixed order accuracy (NLO vs NNLO QCD) is NOT the main effect here

o CDF Resbos 1, Resbos 2 are NLO accurate, DYNNLO/MINNLO are NNLO, DO Resbos1

somewhere in between

Josh Bendavid (MIT)
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arXiv:2308.09417

Angular Coeff Effect on mW measurement (CDF)

Coefficient mr pif P e 7-12 MeV shift of CDF

Ao —6.3 —26 —9.1 measurement to lower mw
A 11 1.3 0.3

Ay —0.7 0.4 ~3.2 values

As —2.1 —4.1 1.0 e HOWEVER published CDF
Aa —14 —3.3 -6 result “accidentally”

Ao — Ay —9.5 —8.4 125 _ _ _
ResBos2 _ —102+1.1 —76+12 —118+14 included this correction as

Difference  —0.7+1.1 0.8+1.2 0.7+1.4 part of the CTEQEM ->

NNPDF 3.1 PDF correction
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%2 probability

Combination and Compatibility

arxivi2308.09417 |1y MwwG

—8— ABMP16 —m—CT14 —&— CT18
o T MG - s S werm o reworas
1;* Excluding CDF jp=—"—=al ——
E DO ¥ *
107" —
102k ATLAS jo——
E Excluding others. —_——
F —
10°L . . y
E LHCh g%
|0°;
E .
—— CDF s
10°L — —_
£ | * | e
80300 80350 80400 80450 | | |
my, [MeV] 80300 80350 80400 80450
My [MeV]
@ Tension persists after correcting for all known theoretical effects and with
any choice of PDF set
@ Only combination with acceptable compatibility is that with CDF
measurement excluded
@ Tension between measurements reduced to “only” 3.60 with more
conservative treatment of PDFs and uncertainties
@ Additional measurements needed. ..

Josh Bendavid (MIT) EW/QCD Experiment 22



Precision W/Z Cross Section Measurements

Events / 2 GeV

x10° 500x10° - i |
r > 900 T T T T T > E
| ATLAS 1 8 450-ATLAS +o &  -ATLAS
50015 =7 Tev, 46 16" EE s=7TeV, 46" %f}i‘f‘s" 3 10 ls=7Tev a6
W se ° S 2o
r g 2 10°F
400 3 [
[ o 10t 3 Muttiet
300~ 3
200~ E

100;

"60 80 100 120 140
m, [GeV] m; [GeV] my, [GeV]

Detector level plots of selected W and Z events

Eur. Phys. J. C 77 (2017) 367 (ATLAS)

40 50 60 70 80 90 100 110 120 40 50 60 70 80 90 100 110 120

@ Multijet backgrounds to W determined in this case using
combination of M+ distribution and inverted identification
and/or isolation criteria (more details on this type of
background estimate later in the week)
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Precision W/Z Cross Section Measurements
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Unfolded cross sections

Eur. Phys. J. C 77 (2017) 367 (ATLAS)

@ Going from detector level distributions to unfolded cross
sections:
@ Backgrounds are subtracted
o Acceptance/efficiency is corrected
e Migration of events between bins due to reconstruction biases
and/or resolution effects are corrected for
(+ propagation of systematic uncertainties)
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Unfolding

@ Going from detector level distributions to
unfolded cross sections:

o Backgrounds are subtracted
o Acceptance/efficiency is corrected

s T . . .
8 | ATLAS Simulation o Migration of events between bins
o due to reconstruction biases and/or
2 resolution effects are corrected for
3 10° . .

3 @ (+ propagation of systematic

E

uncertainties)

@ Migrations can be corrected for via a
response matrix (by simple inversion, or
an alternative method incorporating some
degree of regularization)

10°
Reconstructed Dilepton p:“ [GeV]

Response matrix from unrelated example from ° Alternatlvely’ backgrounds, acceptance,

top physics efficiency and migrations can be corrected
for implicitly by means of a maximum
likelihood fit, aka likelihood based
unfolding
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Correlations of Lepton Efficiency Uncertainties

@ Example shown here for
statistical component of
uncertainty on muon

om i " 'H js reconstruction efficiency for
) ATLAS W/Z measurement

@ Underlying uncertainty is

Correlation

uncorrelated in bins of single

W v
muon pr and 7 in which
e efficiencies were measured with

tag and probe, leading to

non-trivial correlations in

particular for Z /" — up

Eur. Phys. J. C 77 (2017) 367 (ATLAS) measurements

o Consistent propagation of correlations of uncertainties is
crucial to the (re)-interpretability of the result, its use in PDF
fits, etc

Josh Bendavid (MIT) EW/QCD Experiment 26



W lepton charge asymmetry and PDF constraints
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PDF Constraints from ATLAS Precision W/Z cross

sections

& T T o T T a T T

S 0.6F Q?=1.9 GeV? ATLAS 31 < o6k Q*=19GeV?  ATLAS 3 9 s Q?=1.9 GeV? ATLAS |
X 01 o4 MMHT14 X UL 64 MMHT14 X UL oo MMHT14

=] & MMHT14 profiled g S MMHT14 profiled ] &> MMHT14 profiled

03 atas Vs=7Tov, 461

T
Eid

@ Significant constraints on especially sea
quark distributions

Theory/Data
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W vs lepton charge asymmetry at the Tevatron

0.04F @ I W rapidity (b)
‘W’ rapidity
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Phys. Rev. D 91, 032007 (2015) (DO)

@ Lepton charge asymmetry vs 7 is a convolution of PDF effect with V-A
structure of W decay

@ W charge asymmetry as a function of W rapidity more directly probes the
PDFs (but less directly accessible experimentally)

@ Tevatron experiments historically provided both measurements

@ n.b. at Tevatron, asymmetries are sensitive to sign of n or y due to pp
collisions — final results are “CP” folded A(—n/y) — —A(n/y)
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W vs lepton charge asymmetry at the Tevatron

02 :_ (a) ) » DG, 9.7 r ‘y/*
B 1 03 A "
ob- S T DO, 9.7 1
. 5 1 Doa, N £ T
gt DO A, 73" L
g0 MC@NLO NNPDF2.3 % 0sf
ES [ NNPDF2.3 uncertainty E T
< 04 MC@NLO MSTW2008NLO £ [
r RESBOS CTEQG.6 N = E
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[ By>25GeV [
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) W boson rapidity (ly, |)

(a) Lepton Charge Asymmetry (b) W Charge Asymmetry
Phys. Rev. D 91, 032007 (2015) (D), Phys. Rev. Lett. 112, 151803 (2014) (D0)

@ Unfolding to W rapidity using missing transverse momentum and My
constraint

@ Resolving resulting twofold ambiguity requires assumption about relative
fractions of incoming quark vs antiquark in proton beam (plus smaller
effect from gluon-initiated production) — 10% effect in total, with
non-negligible uncertainty from PDF’'s — some circularity in using data in
this form for PDF determination
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W vs lepton charge asymmetry at the Tevatron

Asymmetry
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(a) Lepton Charge Asymmetry

(b) W Charge Asymmetry

Phys. Rev. D 91, 032007 (2015) (DO), Phys. Rev. Lett. 112, 151803 (2014) (DO)

@ On the other hand, lepton charge asymmetry vs i does not contain all

available information, since information on p%, p% and A¢py,, are lost

Josh Bendavid (MIT)
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W Helicity /Rapidity at LHC

L o - -, - - -_— -_—
o —_ o« - -
q ANNAD W+ q q AN W+ q =§
-« — I
(a) left-handed W* (b) right-handed W™ (c) W Rapidity

o At tree level:

@ All W production at LHC is qg induced

o Direction of the W relative to the incoming quark determines the
helicity

@ Only two helicity amplitudes/polarization states

o W has zero transverse momentum

e Full information on valence quark PDF’s in the relevant x range
contained in do/dy broken down into the two helicity states

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity /Rapidity at LHC

- - - - -
—_— — —_— «— - mr -
9 e WH 74 s WH q =5
< — e ) g 37
(a) left-handed W™ (b) right-handed W (c) W Rapidity

@ Direction of incoming quark depends even more on PDF's in pp vs pp
collisions
@ gluon-induced contribution from higher order effects larger and more

uncertain (also due to higher E., compared to Tevatron)

JHEP12(2017)130 E. Manca, O. Cerri, N. Foppiani, G. Rolandi
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W Helicity /Rapidity at LHC

o CMS Simulaton Profminary 359 fb” (13 TeV), 47 5o CMS Simulaton Profminary 3591 (13 TeV) CMS Simulation Preliminary 235916 (13 TeV)
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@ 2D distribution of charged lepton pr and 7 can discriminate
between helicity states as well as rapidity of the W
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W Helicity/Rap

idity at LHC
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lepton P, (GeV)
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lepton n
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@ 2D distribution of charged lepton pr and 7 can discriminate
between helicity states as well as rapidity of the W
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W Helicity /Rapidity at LHC

CMS Simulation Preliminary 13 TeV

T

lepton p_ (GeV)
w W B
D O

W
B

Y, | e I I IR W Ll

-15 -05 0 05 1 15
lepton n

EE wic00<iy <025 EE wip05<ly, <075 ] wiw20<ly,j<225

@ Left and right polarization components can be extracted simultaneously
as a function of W rapidity, using only charged lepton kinematics
(likelihood-based unfolding)

@ Avoids dependence on less precisely measured missing transverse
momentum (at the cost of some statistical dilution)

@ Avoids circular dependence on PDFs since quark vs anti-quark fraction for

each rapidity is measured
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Measurement of W helicity/rapidity

e Develop physics, experimental and technical aspects towards an mW

measurement with reduced PDF uncertainties
o High precision efficiencies building on 13 TeV differential Z cross section publication
o Less stringent requirements on MC/theory uncertainties/energy/momentum calibration
compared to full m  measurement
o Complex profile likelihood fit to lepton pT-n distributions with ~300M W candidates, O(1000)
nuisance parameters -> dedicated tensorflow-based implementation of likelihood and

minimization
¢ CMS 359" (13 TeV
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@ E
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Phys. Rev. D 102 (2020) 092012 Unrolled muon (np,) bin
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W Helicity /Rapidity at LHC
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@ Polarized cross sections (+ covariance matrices) contain the
full set of information
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W Helicity /Rapidity at LHC
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@ Unpolarized xsecs or charge asymmetry can be produced by integrating

over polarization (without assuming underlying polarization)
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W Helicity /Rapidity at LHC: PDF Constraints

(a) @ (b) d (c) rs = (s+3)/(d+d)
@ Strong PDF constraints possible here as well, and a step

towards further reduced PDF uncertainty in future myy
measurements
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«s extraction from Z pr distribution

@ Z transverse momentum distribution is sensitive to the strong
coupling constant via initial state gluon radiation

@ ATLAS has extracted this using very precisely measured Z pr
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«s extraction from Z pr distribution

@ Uncertainty on ais in principle competitive with the world
average or with lattice determinations, but significant
sensitivity here as well to the treatment of the PDFs

T T T T
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Low Pileup Runs

@ Current LHC running conditions have around 60 pp collisions per bunch
crossing (140-200 for HL-LHC)

@ Hadronic recoil/MET resolution degrades with pileup due to additional
hadronic activity

@ Special low pileup runs (low intensity or intentionally separated or
de-focused beams) can be used for more precise measurement of e.g. W
pr spectrum or (with more data) W mass

@ Tradeoff in terms of integrated luminosity (several weeks to one month
low PU run under discussion for 2025-26)
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Low Pileup Runs
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Digression: Object Reconstruction, Identification and

Mis-identification

e Main “high level” objects:

o Jets (+b or c tagging)

o Missing transverse momentum (aka Missing Energy aka
MET), e.g. from neutrinos in final state
(Isolated high pt) photons
(Isolated high pt) electrons
(Isolated high p7) muons
(

]
"]
"]
o (Isolated high pr) taus
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Digression: Object Reconstruction, Identification and

Mis-identification

e What is actually measured in the detector: Stable*
particles

*given relativistic boost and size of the detector

@ Charged hadrons

o Stable neutral hadrons (e.g. neutral Kaons)

e Photons

o Electrons

e Muons

o Important special cases:

o 7% is the lightest and most copiously produced neutral hadron, but
promptly decays to vy (99%) or eTe™v(1%)

o 7 has a short but measurable lifetime (decay length 87um) —
decays to slightly displaced electrons or muons + neutrinos (~ 18%

each) or hadrons + neutrino
@ Jets are a collection of all of the above, but mostly charged hadrons,
photons (mainly from 7°) and neutral hadrons in very roughly 60/30/10
proportions on average (but with large fluctuations from jet to jet)
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Particle Identification in General Purpose Detectors

Silicon
Tracker

Electromagnetic
Calorimeter
Hadron
Calorimeter ~ Superconducting
Solenoid

Tm

2m
1 1

3m
1

LLLL
W

Iron return yoke interspersed
with Muon chambers
4 :n 5 Im 6 Im

Muon Electron

Neutral Hadron (e.g. Neutron)
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Charged Hadron (e.g. Pion)
Photon
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Jet and Missing Energy Reconstruction

@ Jets originate from fragmentation of a quark or
gluon produced by the hard interaction and tend
to be collimated in the detector — define (and
reconstruct) jets based on clustering of final state
particles and/or energy deposits

@ Simplest possible clustering would be based on
AR cones, but e.g. anti-kT is usually preferred
for theoretical considerations

2.t

@ Experimentally a few possibilities: quare 85«
ey

o Cluster calorimeter deposits (typically jet i‘g K+
clustering of smaller calorimeter clusters) -

o Cluster tracks (this is generally not a good
idea, since only charged hadron component
can be included, with large fluctuations
from jet to jet — poor resolution)

o Cluster Particle Flow candidates

e Missing energy can be constructed from
the same constituents as jets in general

Josh Bendavid (MIT) EW/QCD Experiment 48



Particle Flow

@ In a nutshell: Match tracks to calorimeter deposits and assign energy
based on (resolution-weighted) combination of track momentum and
calorimeter energy

@ This can greatly improve the energy and angular resolution for charged
hadrons (and electrons), especially at low energies, and depending on the
relative performance of the inner tracker with respect to the calorimeters

@ Per-particle pileup subtraction becomes natural in this approach

@ Accurately matching calorimeter energy deposits to individual tracks can
be challenging depending on calorimeter granularity, density of tracks, etc
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Jet Composition Example

PF energy fraction

fraction

9
O
= A
3 r ]
© -2 e
o L a L. i L ]
20 30 100 200 1000 2000 40 100 20 1000 2000
p, (GeV) p, (GeV)
(a) Generator (b) Reconstruction
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Pileup Subtraction

e Additional energy/particles from pileup interactions can
contaminate reconstructed jets (especially relevant at lower
energies)

@ Subtraction can be done on average (depending on size of jet
and median pileup density) or per particle using track
association to primary vertex
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Jet Energy Corrections

o ldeally, the energy of the reconstructed jet should match as
close as possible the energy which would be measured by
clustering the stable particles (at generator level in the MC, or
from a hypothetical detector which could perfectly separate
particles and measure their energy)

@ In practice this is not the case out of the box due to a number
of reasons

o Imperfect calibration of calorimeters (and/or biases in track

momentum reconstruction)

o Calorimeter gaps/cracks (and/or tracking inefficiencies)
Misidentification of particles in case particle-dependent
corrections are used
Zero suppression thresholds
Noise
Pileup
etc
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Jet Energy Corrections

Applied to data ——

Flavor
Mc | Calibrated
Jets

Applied to simulation —

@ Derive and apply a sequence of corrections to the jet energy, based on
MC to start with, and with residual corrections to account for Data vs
MC differences
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Inclusive/Dijet Measurements

@ Measurements of jet production relevant for e.g. PDF
constraints, determination of strong coupling constant ag
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19.7 fo™' (8 TeV)

Anti-k; R=0.5, PF+CHS
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@ Consistent determination and propagation of correlations of uncertainties
is crucial to the (re)-interpretability of the result, its use in PDF fits, etc

Correlations of Jet Energy Scale Uncertainties

CMs
S’ 10° L Anti-k; R=0.5, PF+CHS

HE 7
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i ol
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@ Accurate assessment of correlations across phase space can be

challenging, especially for uncertainty sources related to MC modelling
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Multiboson Production

q q
Wi W:I:
Z Z

q q

@ Multiboson production at the LHC can test SM triple and
quartic gauge couplings, search for anomalous gauge couplings
(EFT interpretations), etc

@ Special importance to vector boson scattering production
modes with forward jets
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Example: WZ Production: Cross Section and anomalous

coupling limits

10t EMS Proiminay 1872 1" (13 TeV)
B a  LAL 1LY

s
) i
3 iz b
c - !
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CMS __ Preliminary 137.2 b (13 TeV) o Xy H
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T 5 Totalbh.unc.
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s 3
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Ratio to POWHEG
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M(WZ) [GeV]

e Typical case, measure cross sections (polarization states), etc,
but also use tails of distributions to set limits on anomalous
couplings/EFT operators
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tt production at the LHC

Josh Bendavid (MIT)

large tt production cross section at
the LHC

Heavy final state, gluon induced
production — large rate of
additional jets

Complex final states with b-jets,
leptons and/or additional jets from
W decays

Possibility of colour reconnection
complicates modelling, mass
measurement, etc

Study QCD, top couplings, PDF
constraints, m;, as determination,
understand backgrounds to other
measurements and searches, etc
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tt Differential Cross Sections

Theory
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tt production at the LHC
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@ Several different channels and complementary methods for top
mass measurements
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Lepton Efficiencies: Tag and Probe:

@ Lepton efficiency may be 24
—V
dependent on event topology Pt
@ Must control associated 28y
extrapolation /variation of e, (oMer) Pr
_ . 7/ Y > T
efficiencies when measuring
in one process/phase space | Muon overlaps with
. LHCb underlying event
and applying to another sl pre'@f?ﬂﬂ:%w"“’”ﬂM'*"‘W‘ﬁﬁ
o Example shown here . R f Dua
concerns orientation of g | Muonoverlaps Uncorected sim. (et
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muon Wlth respeCt to o2 W boson distribution
hadronic recoil in drell-yan ’
events, but the effect may 2 ° i
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Conclusions

We have covered a selection of topics in some detail

Much more | could not cover or have glossed over

(Note that the slides have references to the original paper in
most cases)

Precision measurements of electroweak and QCD physics at
the LHC are possible despite the challenging conditions
They provide the means for some of the most stringent tests
yet of the Standard Model and of our understanding of QCD
and its predictions

They also constitute indirect searches for new physics,
complementary to direct ones

Experimental, theoretical and statistical techniques being
developed are an important foundation for higher precision
Higgs measurements at HL-LHC, and for the ultra-precision
physics program at a future ete™ collider
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