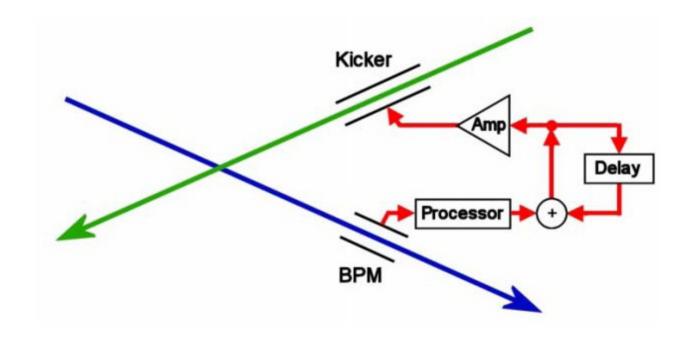
Interaction Point Fast Feedback Douglas BETT John Adams Institute / University of Oxford

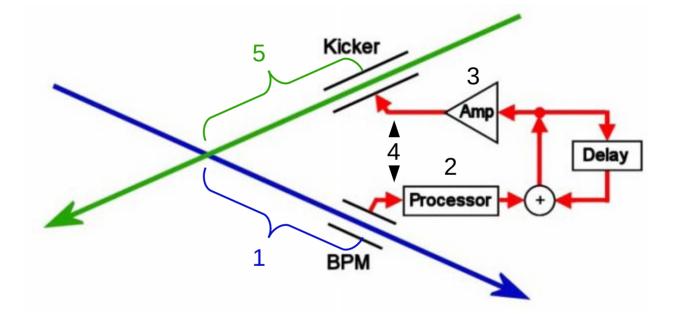
Cool Copper Collider Workshop 12-13 Feb 2024 @ SLAC


Concept

• Brief history of FONT (Feedback on Nanosecond Timescales)

• Considerations for C³

Concept

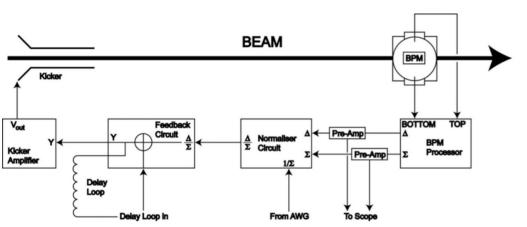
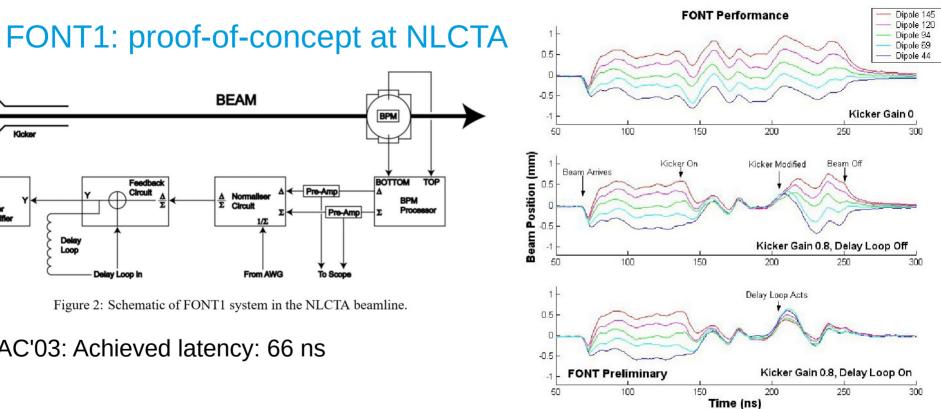

- Last line of defence against relative beam misalignment
- Measure vertical position of outgoing beam and hence beam-beam deflection
- Use fast amplifier and kicker to correct vertical position of other beam

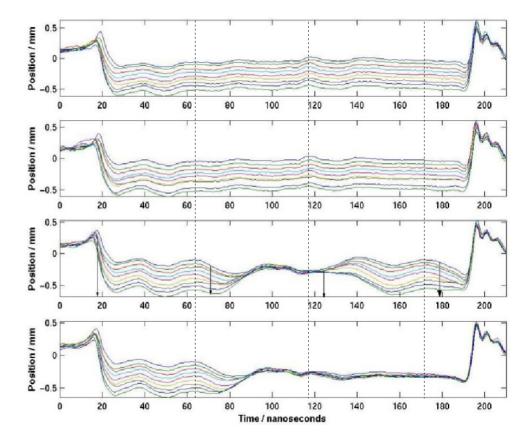
IP position feedback latency

Bunch-by-bunch position correction latency

- Beam flight time IP ► BPM
- 2. Signal processing, FB calculation
- 3. Amplifier & kicker response time
- 4. Cable delays
- Beam flight time kicker ► IP

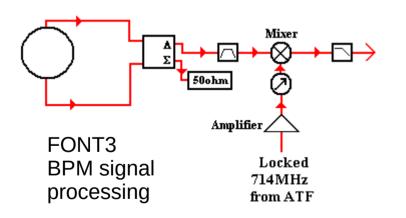
A brief history of FONT: FONT1

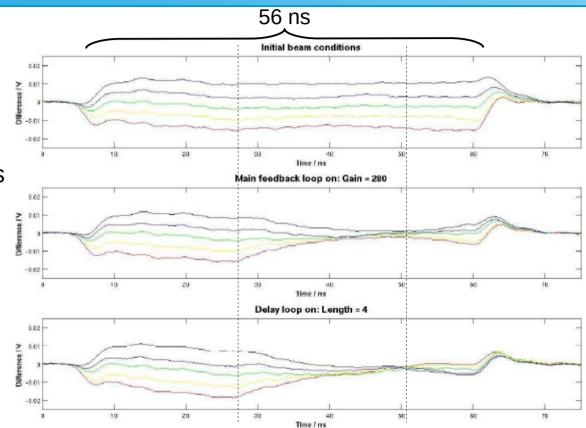




Figure 2: Schematic of FONT1 system in the NLCTA beamline.

PAC'03: Achieved latency: 66 ns

A brief history of FONT: FONT2

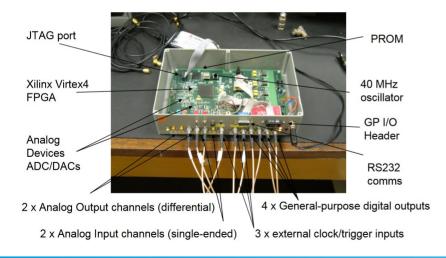

- FONT2: second-gen prototype
- Two witness BPMs added to monitor performance
- Second kicker to reduce amplifier drive power
- Reduced distance between BPM and kicker(s)
- Added "beam flattener"
- EPAC'04: Achieved latency = 53 ns

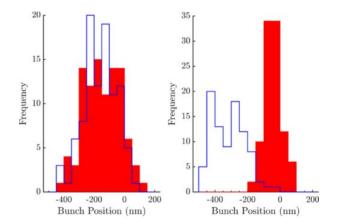


Cool Copper Collider Workshop 12-13 Feb 2024

A brief history of FONT: FONT3

- FONT3: KEK ATF
- New low-latency BPM processor and kicker drive amplifier
- EPAC'06: Achieved latency = 23 ns





Cool Copper Collider Workshop 12-13 Feb 2024

A brief history of FONT: FONT4/FONT5

- FONT4: Digital prototype
- 150 ns bunch spacing at ATF allows for more sophisticated feedback algorithms to be implemented
- Virtex-4 FPGA, ADCs 89 MSPS

- FONT5: Second-gen digital
- Dual-BPM, dual-kicker system for correcting position and angle to achieve ATF2 beam stability goal
- Operated with high-resolution stripline or cavity BPMs
- Virtex-5 FPGA, ADCs 357 MSPS

C³ Parameter Table

Parameter	Symbol[unit]	NLC [3]	CLIC [21]	ILC-250 [22]	ILC-500 [22]	C^3-250 [6]	C^3-550 [6]
CM Energy	\sqrt{s} [GeV]	500	380	250	500	250	550
RMS bunch length	$\sigma_z^*[\mu m]$	150	70	300	300	100	100
Horizontal beta function at IP	β_x^* [mm]	10	8.2	13	22	12	12
Vertical beta function at IP	β_y^* [mm]	0.2	0.1	0.41	0.49	0.12	0.12
Normalized horizontal emittance at IP	ϵ_x^* [nm]	4000	950	5000	5000	900	900
Normalized vertical emittance at IP	ϵ_y^* [nm]	110	30	35	35	20	13
RMS horizontal beam size at IP	σ_x^* [nm]	286	149	516	474	210	142
RMS vertical beam size at IP	σ_y^* [nm]	6.7	2.9	7.7	5.9	3.1	1.7
Num. Bunches per Train	n_b	90	352	1312	1312	133	75
Train Rep. Rate	f_r [Hz]	180	50	5	5	120	120
Bunch Spacing	[ns]	1.4	0.5	554	554	5.26	3.5
Bunch Charge	$Q[\mathrm{nC}]$	1.36	0.83	3.2	3.2	1	1
Bunch Population	$N_e[10^9 \text{ particles}]$	8.49	5.18	20.0	20.0	6.24	6.24
Beam Power	P_{beam} [MW]	5.5	2.8	2.63	5.25	2	2.45
Final RMS energy spread	%	0.38	0.35	~ 0.1	~ 0.1	~ 0.1	~ 0.1
Crossing Angle	θ [rad]	0.020	0.0165	0.014	0.014	0.014	0.014
Crab Angle	θ [rad]	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2	0.014/2
Gradient	[MeV/m]	37	72	31.5	31.5	70	120
Effective Gradient	[MeV/m]	29	57	21	21	63	108
Shunt Impedance	$[M\Omega/m]$	98	95			300	300
Effective Shunt Impedance	$[M\Omega/m]$	50	39			300	300
Site Power	[MW]	121	168	125	173	~ 150	~ 175
Length	[km]	23.8	11.4	20.5	31	8	8
L*	[m]	2	6	4.1	4.1	4.3	4.3

Considerations for C³

- C³ more NLC-like than ILC-like, so the low latency of an analogue system like FONT3 probably more suitable
- Time of flight kicker BPM:
- Signal return time BPM kicker: Irreducible latency:
- **BPM** processor:
- ADC/DAC (3.5 89 MHz cycles) ٠
- Signal processing (9 357 MHz cycles)
- FPGA i/o
- Amplifier
- Kicker fill time **Electronics latency:**
- Total latency budget:

FONT4 4ns 10ns 14ns	FONT3 4ns 5ns 9ns		nds on how close to t an get your compone	
10ns ער 40ns	5ns			
27ns 3ns	based on	bsolete (digital components	
35ns	5ns			
3ns				
118ns	10 ns			
132ns	20ns			

Summary

- The FONT group developed multiple feedback systems:
 - FONT3 for NLC, all analogue, latency 23 ns
 - FONT5 for ILC, flexible mixed digital/analogue system, latency 150 ns
- FONT3 probably more suitable due to C³ parameters

Credit for this work belongs to the FONT team over the years:

Robert Apsimon, Neven Blaskevic Kraljevic, Ryan Bodenstein, Talitha Bromwich, Philip Burrows, Glenn Christian, Christine Clarke, Ben Constance, Michael Davis, Tony Hartin, Young Im Kim, Simon Jolly, Steve Molloy, Gavin Neson, Colin Perry, Rebecca Ramjiawan, Javier Resta Lopez, Jack Roberts, Christina Swinson