Bunch compression for the ultra-compact x-ray freeelectron laser

River Robles (riverr@stanford.edu)

Stanford University and SLAC

C³ Workshop

February 13th, 2023

The Ultra-Compact X-ray Free-Electron Laser (UCXFEL)

Cool copper accelerating structures → high gradient acceleration Cool copper injector → ultra-high brightness beam Novel compression layout → preserve brightness

Compression stages in more detail

Coherent synchrotron radiation (CSR)

Correlated energy kicks in dispersive region \rightarrow temporal-angular correlations \rightarrow emittance growth

First compressor: zig-zag chicanes

Single chicane ("C-chicane") design: 112 nm-rad projected emittance

SLAC

100

Zig-zag chicane ("S-chicane") design: 65 nm-rad projected emittance

Jing, Yichao, Yue Hao, and Vladimir N. Litvinenko. *PRSTAB* 16.6 (2013): 060704.

Robles, River, and James Rosenzweig. Instruments 3.4 (2019): 53.

Second compressor: laser-based compression

Microbunch features

Rosenzweig, J. B., et al. "*New Journal of Physics* 22.9 (2020): 093067.

Three-dimensional CSR effects for short bunches

SLAC

8

How does 3D CSR affect the UCXFEL case? – Study with GPT simulations of a single microbunch

Derbenev, Yaroslav S., et al. *Microbunch radiative tail-head interaction*. No. TESLA-FEL-95-05. SCAN-9511114, 1995. R. R. Robles, *et al*. Three-dimensional radiative effects in the compression of ultra-short electron micro-bunches. Proceedings of *IPAC 2021* (2021).

What's happening?

R. R. Robles, et al. Three-dimensional radiative effects in the compression of ultra-short electron micro-bunches. Proceedings of IPAC 2021 (2021).

A cautionary tale about energy spread: intrabeam scattering

We only understand bunch compression limits insofar as we understand our energy spread

$$\sigma_{z,min} = \sigma_{z,0} \frac{\sigma_{\delta}}{\sqrt{\sigma_{\delta}^2 + h^2 \sigma_{z,0}^2}}$$

Smooth, mostly correlated space-charge forces High-frequency noise \rightarrow microbunching instability

Stochastic collisions give rise to uncorrelated energy spread growth

	PITZ	EUXFEL	SwissFEL
Charge (pC)	250	250	200
Energy (MeV)	20	130	100
Current (A)	20	20	20
Energy Spread (keV)	2.1	5.9	15

Simulations generally < 1 keV from injector

Tomin, Sergey, et al. *PRAB* 24.6 (2021): 064201. Qian, Houjun, et al. *PRAB* 25.8 (2022): 083401. Prat, Eduard, et al. *PRAB* 23.9 (2020): 090701.

Modeling intrabeam scattering effects

SLAC

Low energy: scaling arguments

In injector, beam envelope follows:

$$\sigma_x'' + \frac{\gamma'}{\gamma}\sigma_x + \frac{\eta}{8}\left(\frac{\gamma'}{\gamma}\right)^2\sigma_x = \frac{I}{2I_A\gamma^3\sigma_x}$$

If we scale this while holding $\frac{Q}{\sigma_x \sigma_y \sigma_z}$ constant, we can put it in a form that is independent of the charge

Robles, River R., et al. PRAB 24.6 (2021): 063401.

High energy: Piwinski formula

The following formula is often borrowed from older studies on IBS in rings:

A. Piwinski, in Proceedings of the 9th International Conference on High Energy Accelerators, Stanford, CA, USA,1974,p.405. Huang, Z. SLAC-TN-05-026 (2002).

Conclusions

- The UCXFEL has two key challenges that require innovative approaches to CSR mitigation:
 - Starting from ultra-low emittance beams
 - Requiring kA compression at relatively low energies
- Zig-zag chicanes can cancel correlated CSR kicks, avoiding projected emittance growth
- Laser modulation enables large chirps with relatively low energy spreads
- 3D CSR can be helpful or harmful, but should be quantified. Seems to have the same working points as 1D from a design perspective
- Sources of uncorrelated energy spread (IBS, MBI) still poorly understood and require better modeling approaches

Parameter	Units	C-Band Linac	Harmonic Cavity
Frequency	GHz	5.712	34.272
Voltage change	MeV	266.74	12.36
Phase	∘	75.91	-98.20

Table 2. Parameters for the first linac section and linearizing cavity.

Parameter	Units	First Chicane	Second Chicane
Magnet length	m	0.2	0.2
Drift length	m	1.29	0.21
Bend angle	0	8.3	3.2
R ₅₆	mm	59.85	2.15
Entrance β_r	m	16.25	5.5
Entrance α_x		4.1	3.1

Table 3. Parameters for the chicanes of the first bunch compressor.

Specific numbers for second compressor

Parameter Units Value Undulator period, λ_{mod} 15 cm Peak undulator field Т 0.87 Number of periods 10 Laser wavelength, $\lambda_{\rm L}$ 10 μm Laser waist 0.926 mm Laser peak power MW 145

 Table 4.
 Parameters of the laser modulator.

Table 5. Parameters of the final bunch compressor.

Parameter	Units	Value
Magnet length	m	0.1
Drift length	m	1.0
Bend angle	0	1.32
R_{56}	mm	1.14
Entrance β_x	m	10
Entrance α_x		4