Update from UCLA C³-related research program

James Rosenzweig UCLA Dept. of Physics and Astronomy Cold Copper Collider Meeting SLAC – February 12, 2024

UCLA origin story in cryo-RF research

- Discovery research in SLAC-UCLA collaboration on cryogenic RF cavity in X-band
 - Cryo-conditions lower heating, thermal expansion small, enhanced heat transport & strength
- 200 MV/m surface fields -> 500 MV/m. ~300 MV/m limit from dark current
- Transformative applications in linear collider and XFEL

A. D. Cahill, et al., Phys. Rev. Accel. Beams 21, 102002 (2018)

> order of magnitude Increase in brightness $B_{6D} \propto E_0^{2.5}$ in cryogenic photoinjector 40000 30000 ชั้ 20000 พี 100ns 200ns Onset of dark current 10000 400ns loading >300 MV/m 800ns 0 100 200 300 400 Peak Electric Field [MV/m]

A. D. Cahill, et al., Phys. Rev. Accel. Beams 21, 061301 (2018)

High brightness electron beam source for FEL and LC: *the RF photoinjector*

- Laser gating to fs-to-ps level
- Capture with RF violent acceleration
 - Fields 10x DC sources (>100 MV/m)
- Preserve phase space structure
 - High fields are critical for spacecharge control (emittance, pulse length)
- Frontier RF engineering
 - Now more than ever!
- Photocathode physics
 - CBB research to lower MTE

Traditional UCLA-designed RF photoinjector operated at ~100 MV/m

UCLA helped pioneer this transformative device, applied to: FELs, wakefield accelerators, electron diffraction, etc.

Scaling of brightness at emission

- 5D Brightness at cathode: $B_e = \frac{2I}{\varepsilon_n^2} = \frac{2J_{\text{max}}m_ec^2}{k_BT_e}$
- In 1D limit, peak current from a pulsed photocathode is $ec\epsilon_0 (E \sin a)^2$

$$J_{z,b} \approx \frac{ec\varepsilon_0}{m_e c^2} (E_0 \sin \varphi_0)^2$$

• 5D Brightness is

$$B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} \left(E_0 \sin\varphi_0\right)^2 \qquad B_{6D} \sim E^{2.5}$$

- Lower emission temperature T_c and/or...
- High launch field needed
 - Cryo-RF ideal solution

Transformative electron source from high field C-band cryogenic RF cavities

Immediate application also in UED, HEP

Design also implemented in LANL room temp photoinjector (Simakov)

Record 6D brightness predicted New effects: IBS, disorder induce heating

Further improvements from cryo-emission

- Cryogenic emission promises much lower MTE (thermal emittance)
- First tests in 0.5 cell C-band cryo-gun at UCLA Commissioning now
- Operation just above threshold
 - Tradeoff with QE

Cryostat, CYBORG beamline components at UCLA MOTHRA

Asymmetric emittance beams for linear colliders

- Eliminate electron damping ring
- Round-to-flat beam transformation
- Very small 4D transverse emittance needed
 - Consistent with magnetized photocathode and very high gradient

Performance of round-to-flat beam transformation

- Emittance 90 nm-rad before splitting (increase of 75% over XFEL case)
- Splitting nearly ideal in simulation, including space-charge effects
- Very high brightness test beams for BBU studies, P-O-P on emittances

First use of cryo-RF gun and linacs: university-scale UC-XFEL

More below.

"CYBORG" Status (Lawler)

CYBORG Low Power RF

Cold Gun High Power RF Testing

- First filling of gun cavity at intermediate temperature during cool down to 150 K to look at detuning
- Up to 350 kW in half-cell, operating below 95 K
- Fully filled @ 2.5 us, 80 MV/m.

Cryo RF Performance Overview

 Parameters for gun thus far compared to RRR100-500 case (left) with empirical numbers measured to inform simulations (right)

Parameter Frequency Q_0 β Filling time	295K 5.695 GHz 8579 0.7 -	100K 5.711 GHz 18668 1.53 0.41 μs	77K 5.712 GHz 24200 1.98 0.45 μs	40K 5.713 GHz 39812 3.26 0.52 μs	G. Lawler et al, "Improving Cathode Testing with a Hig Gradient Cryogenic Normal Conducting RF Photogun" <i>Instruments</i> (under review)			
				Parameter	295 K	95 K	77K	45 K
V/i 6.218+1	m 8♥			<i>f</i> ₀ [MHz]	5703.6 ± 0.1^1	5720.410 ± 0.003^1	5721 ± 3	5722 ± 4
5.58+ 5e+ 4.5e+ 4e+	8 - 8 - 9 -			Q ₀	7808 ± 13^1	14326 ± 12^1	21000 ± 3600	30000 ± 9900
3.5e4 3e4 2.5e4 2.8e4	8	On Axis E _z		Coupling β	0.608 ± 0.002^1	1.069 ± 0.002^{1}	1.60 ± 0.44	2.4 ± 0.9
1.5e+ 1.0+ 5e+				Filling time [µs]	0.271 ± 0.01^1	0.386 ± 0.001^{1}	0.44 ± 0.01	0.49 ± 0.03
	ці 10.6			Power [MW] for 120 MV/m	1.23 ± 0.10	0.85 ± 0.08	0.79 ± 0.01	0.70 ± 0.09
	0.4 2			Energy [J] per 2μ s pulse	2.45 ± 0.01	1.70 ± 0.02	1.58 ± 0.03	1.40 ± 0.19
	0.2			Cathode field @ 0.5 MW	$77 \pm 3 \text{MV/m}$	$92\pm5\mathrm{MV/m}$	$93 \pm 3 \text{MV/m}$	$102\pm7~MV/m$
	-0.25 0.00 0	0.25 0.50 0.75 1.00 1.25 Longitudinal position [cm]	1.50 1.75		¹ Values experimenta	Ily measured or computed direct	tly from low power measure	ments

This gun operated at 180 MV/m peak is state-of-art UED electron source

Cathode Testing Comparison

- Plotting of CYBORG parameters compared to existing cathode gun testing environments
- CYBORG conditioning ongoing but current gradient is 75-80 MV/m with target of 120 MV/m
- 95 K with improvements to 77 K underway

Cathode Load Lock Chamber

- Long term use of CYBORG for cathode testing requires UHV chamber (<10⁻¹⁰ torr)
 - Consistent with polarization (120 MV/m)
- Development of pumping setup and additional cathode plug manipulator studies needed
- First tests with Cs₂Te

BBU modelling – Beam Physics Challenges

- Inherent focusing from high gradient RF linacs
 - 1st order focusing: transitions from field-free to non-zero field regions
 - 2nd order focusing: non-synchronous space harmonics in the accelerating cells

J. Rosenzweig and L. Serafini, *Transverse particle motion in radio-frequency linear accelerators*, Physical Review E 49, 1599 (1994).

S. C. Hartman and J. B. Rosenzweig, "Ponderomotive focusing in axisymmetric rf linacs," *Phys. Rev. E*, vol. 47, pp. 2031–2037, Mar 1993.

 $\begin{array}{c} x \\ x' \\ z_{2} \\ z_{3} \\ z_{3} \\ z_{3} \\ z_{4} \\ z_{4} \\ z_{5} \\ z_{5} \\ z_{6} \\ z_{7} \\ z_{7}$

- Intra-beam coupling due to SRWFs (field diffraction from the irises)
- Inter-beam coupling due to LRWFs (HOMs excitation)

J. D. Lawson, "Radiation from a ring charge passing through a resonator", Rutherford High Energy Laboratory, Chilton, England, Rep. RHEL/M144, 1968. K. Bane, "Short-range dipole wakefields in accelerating structures for the NLC", SLAC, Menlo Park, USA, Rep. SLAC-PUB-9663, Mar. 2003. doi:10.2172/812954

- Notable impact from space charge mechanisms
 - Nominal focusing at injection too strong in absence of SC forces
 - Emittance compensation process and other slice-dependent effects

L. Serafini and J. B. Rosenzweig, Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation, Physical Review E 55, 7565 (1997).

Important for FEL, ICS and C3

The Code MILES

Dedicated tracking code

- Motivation to investigate wakefields effects in linacs in presence of non-negligible space charge endangering the nominal beam quality
- Use of simple semi-analytical models: flexible and time-efficient tool (factors ~1/40-1/10) with acceptable reduction of the accuracy
- Main applications: investigation of misalignment effects and design of possible **correction** schemes

MTLES = Multi-bunch and Intra-beam effects in Linacs Evaluating Stability

F. Bosco et al., "Fast models for the evaluation of self-induced field effects in linear accelerators," NIM-A vol. 1056, p. 168642, 2023 <u>https://doi.org/10.1016/j.nima.2023.168642</u>

Modeling overview and comparison with other codes

	MILES approach	Commonly utilized approaches
Space Charge	Equivalelent ellipsoid or Multi- slice superposition	Particle in cell (PIC)
Wakefields	Algebraic formalism	Convolution integral or FFT equivalent

Miles Davis (May 26, 1926 -September 28, 1991)

17

Long-range BBU in the C³ Linac

- BBU studies for the **250 GeV CM** working point of the C³ linear collider
- Center of mass **oscillations** and **beam loading effects** in multi-bunch operation: sequence of point-like, structureless macro-particles carrying the whole bunch charge

Parameter	Unit				
Note				Baseline	Compact
Center of Mass Energy	GeV	91	250	550	550
Luminosity	$x10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.4	1.3	2.4	2.4
Single Beam Power	MW	0.7	2	2.5	2.5
Single Linac Active Length	km	0.56	1.83	2.45	1.9
Injection Energy Main Linac	GeV	10	10	10	10
Train Rep. Rate	Hz	120	120	120	120
Bunch Charge	nC	1	1	1	1
Flat-Top RF Pulse Length	ns	700	700	260	195
Bunch Spacing	Periods (ns)	30 (5.26)	30(5.26)	20(3.5)	15(2.6)
Bunches per Train		133	133	75	75
Average Current	μA	16	16	9	9
Peak Current	A	0.19	0.19	0.3	0.385
Loaded Accel. Gradient	MeV/m	70	70	120	155
RF Power for Structure	MW/m	30	30	80	140

 $3\pi/4$ structure!

Mei Bai and et al. C³: A "cool" route to the higgs boson and beyond. *TBD*, 10 2021. URL https://www.osti.gov/biblio/1831907.

Emilio Nanni et al. C^3 demonstration research and development plan, 03 2022.

Long-range BBU in the C^3 Linac (2)

Beam Breakup and Beam loading

- 700 ns RF-pulse (flat-top) filled with 133 bunches, 1 nC each, and 5.26 ns separation (30 RF-periods)
- Acceleration at an avg gradient of 70 MeV/m
- Injection 100 μm off axis: excitation of dipole HOM

Detuning of the HOMs

- **Unstable** motion if f_{HOM}/f_b is close to an integer
- Mitigation through frequency spread (or detuning)
- Small variations of the geometry: HOMs exhibit different random frequencies in subsequent sections

Alban Mosnier. Instabilities in linacs. In CERN Accelerator School: Course on Advanced Accelerator Physics (CAS), pages 0459–514, 12 1993.

Chip metrology XFEL with ptychographic

laminography

Expand the footprint to 2.45 GeV

Test stand of beam production, acceleration, compression.

SLAC

XRAFEL performs very well at 7 keV

- 1E14 coherent photons (with higher bandwidth)
 - Factor of 1E5 increase over SLS cSAXS
- Use 10 um microbunching IFEL instead?

XRAFEL for Ptychography

- Regenerative amplifier in hard X-ray
- Compact crystal cavity (12 m/40 ns roundtrip) encloses 4-m undulator
- Recirculate X-rays in XRAFEL configuration for 8 passes (requires 300 ns flat RF pulse duration)
- Photon energy 7 keV, use C (220) reflection at 45 deg Bragg angle

Table 1. Summary of input parameters for 1D simulation.

Parameter	Units	Value
Energy	GeV	2.44
Energy spread	%	0.03
Normalized transverse emittance	nm-rad	75
Peak current	kA	4.0
Undulator parameter, K		0.501
Undulator period	mm	6.5
Undulator length	m	4.0
Fundamental FEL wavelength	Å	1.783
Photon energy	keV	6.95
Diamond (220) bandwidth	meV	141
Cavity roundtrip length (time)	m (ns)	12 (40)
Number of electron bunches in an RF pulse		8

Ptychographic laminography enabled by coherence

Goal: increased flux and coherence

Concept accepted in Instruments, available on Preprints.org

Proposals now active

- NSF STTR "Semiconductor" program
- ARDAP design study
- BES Energy Frontier Research Center (now at UCLA)
- CHIPS Act-funded activities (NIST) now under discussion
- Private investment
- Industry interest high
 - Rayton semiconductor
 - RadiaBeam (R&D part)
 - Samsung
 - Intel

Baohua Niu, PhD Principal Engineer/Engineering TD Manager MailStop: RA4-6th-K1 Intel Corporation 2501 NE Century Blvd, Hillsboro, OR 97124 (503)297-5398

Professor Rosenzweig, UCLA Dept.. of Physics and Astronomuy Ms Aurora Araujo, RadiaBeam Technologies

January 8th, 2024

Dear Professor Rosenzweig, Ms. Araujo,

It is a great honor to write this letter of interest to show our interest and support for your proposed STTR research and development project: "Revolutionizing Next Generation Chip Metrology with a Compact, High Flux X-ray Free-electron Laser". At Intel, we are pushing state of art high volume semiconductor manufacturing technology and process to support our public stated goal of achieving 5 nodes in 4 years and gaining technology leadership for the United States in Advanced Semiconductors Manufacturing Technology and Processes.

intel.