RF Modeling

Mohamed Othman 2/13/2024

Cool Copper Collider Workshop SLAC, Feb. 12-13, 2024

- Advanced RF modeling needs (P5 report)
- ACE3P updates
- S-Band distributed coupling structure RF design and tuning

Conclusion

Acknowledgement: C.-K. Ng, L. Li, L. Xiao, Z. Li, D. Bizzozero, E. Nanni, A. Dhar, A. Haase, M. Bei, S. Tantawi

DOE HEP GARD, SLAC LDRD, US-Japan collaboration Collaboration: KEK, LBNL, LANL

Modeling & Simulation for Advanced RF Accelerators and Sources

- Novel RF structures present a challenge in terms of modeling and performance perdiction
- Multi-scale problems, spatiotemporal
- Diverse R&D approach includes full rf structure optimization
- Virtual prototyping → need diverse portfolio of supported codes
- Shorten wait time to solution + robust optimization → need HPC infrastructure

- Relativistic beam
- Space charge
- Fields generated by beam act back on beam
- Exotic materials nonlinear, parametric behavior

Multi-Physics Modeling Capabilities of RF Accelerators

- ACE3P is a parallel multi-physics code suite including electromagnetic (EM), thermal and mechanical simulations for virtual prototyping of accelerator and RF components
 - Based on *curved high-order finite elements* for high-fidelity modeling
 - Implemented on *massively parallel computers* for increased problem size and speed
 - C++ & MPI based

٠

Capabilities to match CCC R&D needs (add more...)

Frequency Domain:	Omega3P	- Eigensolver (damping)				
	S3P	- S-Parameter				
<u>Time Domain:</u>	ТЗР	 Wakefields and Transients 				
Particle Tracking:	Track3P	 Multipacting and Dark Current 				
EM Particle-in-cell:	Pic3P	 RF guns & space charge effects 				
Multi-physics:	TEM3P	- EM, Thermal/Mechanical analysis				
Static Particle-in-cell:	Gun3P	- DC guns & space charge effects				
Optimization:	Opt3P	 Cavity shape optimization 				

ACE3P (Advanced Computational Electromagnetics 3P)

 "ACE3P is the advanced EM code available to the community and the result of thousands of person-hours over the past several decades. Maintaining broad access to this code while providing continual improvements will be a challenge."

P5 Recommendations Relevant to Advanced Computing efforts

<u>Recommendation 4</u>: Support a comprehensive effort toward yield revolutionary accelerator designs that chart a realistic path to a 10 TeV pCM collider.

<u>Recommendation 16</u>: Resources for national initiatives in AI/ML, quantum, computing, and microprocessors should be leveraged and incorporated into research and R&D efforts to maximize the physics reach of the program.

<u>Recommendation 17</u>: Add support for a sustained R&D effort at the level of \$9M per year in 2023 dollars to adapt software and computing systems to emerging hardware -GARD

<u>Recommendation 19</u>: Research software engineers and other professionals at universities and labs are key to realizing the vision of the field and are critical for maintaining a technologically advanced workforce.

>>Targeted increases in support for theory, general accelerator R&D (GARD), instrumentation, and computing will bolster areas where US leadership has begun to erode.

EM-Beam Optimization for Accelerator System Optimization

- Integrated Electromagnetics and Beam Dynamics Optimization
- Integration of ACE3P with particle dynamics solver
- Multi objective optimization and AL/ML techniques

Implemented optimization procedure in the integrated simulation workflow for combined beam dynamics and electromagnetics simulation.
Applied simulation workflow to evaluate HOM effects on beam dynamics in LCLS-II injector.
Started development of coupled optimization of cavity shape and beam dynamics for SRF gun.

Simulation workflow for ACE3P and IMPACT optimization

Integrated EM-Beam and radiation for Accelerator Facilities

ACE3P-Geant4 integration

- tracking of field-emitted e⁻ in cavity using ACE3P
- radiation transport in cavity enclosure using Geant4
- particle data transfer and CAD models for integrated tool
- applied to evaluating dark current radiation effects

Particle trajectories in accelerator structure using Geant4

KEK 56 Cells Dark Current Simulation by Track3P

- Particles emission: Fowler Nordheim Law
- 30 RF cycles for particles fly through
- Particles collected while hitting the wall

Development of Nonlinear Material Solvers

- Nonlinear dielectric materials
 - higher-order susceptibilities
 - applicable to THz accelerators and optical devices for QIS
 - supported by LDRD

Developed a robust simulation platform with efficient numerical techniques for virtual prototyping of nonlinear comments, superconducting devices.

- HPC on NERSC supercomputer
 - ACE3P on Perlmutter CPU nodes with linkage to software libraries
 - significant speedup achieved using the new architecture
 - Using PETSc solver for massive scalability

General ACE3P updates

- Upgrade GUI with Kitware Inc.
- Prepare code documentation
- Convert ACE3P compilation from boost build to Makefile
- Improve PETSc GPU performance in T3P
- Offload data to GPU for parallel kernels in Track3P using OpenMP
- Apply PIC3P to klystron simulations
- Investigate quantum phenomena (integration with DFT)

Distributed Coupling Accelerators Structures

Design balances shunt impedance with aperture size

- S-band cavities designed with aperture a=14.71 mm
- At the π mode there is no power transfer between cells
- However, frequency of individual cell is influenced by neighboring cells

Structure Fabrication and Tuning

- Fabricated structure showed ~4 MHz frequency shift in pi-mode
- However, each individual cell was tuned so collectively the pi-mode shape was different

Data	Mode 5 GHz	Δ MHz	Mode 4 GHz	Δ MHz	Mode 3 GHz	Δ MHz	Mode 2 GHz	Δ MHz	Mode 1 (pi mode)	4 × 10 ⁷
Original Design simulation	2.8437	3.6	2.8473	3.3	2.85060	2.8	2.85340	2.5	2.85590	
Cold test	2.85076	3.74800	2.85451	3.2000	2.85771	2.0360	2.85974	0.9480	2.86069	
Retuned Simulation	2.85115	3.900	2.85505	2.900	2.85795	1.7500	2.85970	0.975	2.86068	0 -0.6 -0.4 -0.2 0 0.2 0.4 0

Virtual RF Tuning

Virtual beam pull

- Each cavity has a dielectric bead with a relative permittivity to induce tuning
- Each bead can be turned ON or OFF in simulation

Tuning Distributed Coupling S-Band LINAC

- First, calculate derivatives of pi mode frequency of each cell versus perturbation ε_i
 - $f_m = \frac{\partial f_m}{\partial \varepsilon_m}, m = 1, 2, \dots, 20$
- Gradient perturbation in each cell

$$E'_{mn} = \frac{\partial E_m}{\partial \varepsilon_n} \times \left(\frac{\partial f_n}{\partial \varepsilon_n}\right)^{-1} = \frac{\partial E_m}{\partial f_n}, m, n = 1, 2, \dots, 20$$

Modeling

 $\Big|\frac{\partial E_{mi}}{\partial f_{mi}}\Big|$

Measurement

unit is MV/m / GHz with 1 W input power

- In general good agreement, some discrepancies due to accuracy of frequency measurement s (100 kHz)
- Cavities in the middle are less sensitive to tuning, need collective tuning

Target Optimal Frequencies Based on Perturbative Method

• The resulting field in the cell j after iteration $_{i}E_{m,i} = E_{m,i-1} + df_{m,i-1} \frac{\partial E_{m,i-1}}{\partial f_{m,i-1}} + \dots$

• Target normalized fields are given by the following

$$E_{im} = 1e^{jm\pi}$$

• Target frequencies are given by $f_{m,i} = f_{m,i-1} - df_{m,i}$

$$f_{m,i} = f_{m,i-1} - \left(\frac{\partial E_{m,i-1}}{\partial f_{m,i-1}}\right)^{-1} \left(1e^{jm\pi} - E_{m,i-1}\right)$$

Tuning

Cav12

Cav13

- First iteration of tuning has been successful in retrieving symmetry and improve coupling to cells
- Developed tool for using machine learning to train a model for adaptive control and muti-objective optimization

Cav1

- Efforts in advanced RF modeling and virtual prototyping are crucial for CCC
- Development of ACE3P is ongoing with more features, add-on and use cases
- Tuning S-Band injector realizes heavily on virtual prototyping